版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省安庆市怀宁中学2025届高一下数学期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线xy+1=0的倾斜角是()A.30° B.60°C.120° D.150°2.函数的值域为A.[1,] B.[1,2] C.[,2] D.[3.在中,且,则等于()A. B. C. D.4.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.85.以下现象是随机现象的是A.标准大气压下,水加热到100℃,必会沸腾B.长和宽分别为a,b的矩形,其面积为C.走到十字路口,遇到红灯D.三角形内角和为180°6.函数的最小正周期是A. B. C. D.7.用数学归纳法证明n+1n+2⋯n+n=-2A.2k+1 B.22k+1 C.2k+1k+18.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法9.在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,则锥体被截面所分成的两部分的体积之比为()A.1∶ B.1∶9 C.1∶ D.1∶10.如图,在长方体中,,,,分别是,的中点则异面直线与所成角的余弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,则函数是__________函数(奇偶性).12.若函数的图象过点,则___________.13.已知两点,则线段的垂直平分线的方程为_________.14.设等比数列满足a1+a2=–1,a1–a3=–3,则a4=___________.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.16.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设等差数列满足.(1)求数列的通项公式;(2)若成等比数列,求数列的前项和.18.在公差不为零的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,求数列的前项和.19.化简求值:(1)化简:(2)求值,已知,求的值20.某运动爱好者对自己的步行运动距离(单位:千米)和步行运动时间(单位:分钟)进行统计,得到如下的统计资料:如果与存在线性相关关系,(1)求线性回归方程(精确到0.01);(2)将分钟的时间数据称为有效运动数据,现从这6个时间数据中任取3个,求抽取的3个数据恰有两个为有效运动数据的概率.参考数据:,参考公式:,.21.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
首先求出直线的斜率,由倾斜角与斜率的关系即可求解.【详解】直线xy+1=0的斜率,设其倾斜角为θ(0°≤θ<180°),则tan,∴θ=150°故选:D【点睛】本题考查直线斜率与倾斜角的关系,属于基础题.2、D【解析】
因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.3、A【解析】
在△ABC中,利用正弦定理与两角和的正弦化简已知可得,sin(A+C)=sinB,结合a>b,即可求得答案.【详解】在△ABC中,∵asinBcosC+csinBcosAb,∴由正弦定理得:sinAsinBcosC+sinCsinBcosAsinB,sinB≠0,∴sinAcosC+sinCcosA,∴sin(A+C),又A+B+C=π,∴sin(A+C)=sin(π﹣B)=sinB,又a>b,∴B.故选A.【点睛】本题考查两角和与差的正弦函数与正弦定理的应用,考查了大角对大边的性质,属于中档题.4、B【解析】
如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】5、C【解析】
对每一个选项逐一分析判断得解.【详解】A.标准大气压下,水加热到100℃,必会沸腾,是必然事件;B.长和宽分别为a,b的矩形,其面积为,是必然事件;C.走到十字路口,遇到红灯,是随机事件;D.三角形内角和为180°,是必然事件.故选C【点睛】本题主要考查必然事件、随机事件的定义与判断,意在考查学生对该知识的理解掌握水平,属于基础题.6、D【解析】
的最小正周期为,求解得到结果.【详解】由解析式可知,最小正周期本题正确选项:【点睛】本题考查的性质,属于基础题.7、B【解析】
要分清起止项,以及相邻两项的关系,由此即可分清增加的代数式。【详解】当n=k时,左边=k+1当n=k+1时,左边====k+1∴从k到k+1,左边需要增乘的代数式为22k+1【点睛】本题主要考查学生如何理解数学归纳法中的递推关系。8、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.9、D【解析】解:因为在一个锥体中,作平行于底面的截面,若这个截面面积与底面面积之比为1∶3,那么分为的两个锥体的体积比为1:,因此锥体被截面所分成的两部分的体积之比为.1∶10、A【解析】
连结,由,可知异面直线与所成角是,分别求出,然后利用余弦定理可求出答案.【详解】连结,因为,所以异面直线与所成角是,在中,,,,所以.故选A.【点睛】本题考查了异面直线的夹角,考查了利用余弦定理求角,考查了计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、偶【解析】
利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.12、【解析】
由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.13、【解析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.14、-8【解析】设等比数列的公比为,很明显,结合等比数列的通项公式和题意可得方程组:,由可得:,代入①可得,由等比数列的通项公式可得.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.15、【解析】
试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.16、【解析】
根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】
(1)利用等差数列性质先求出的值,进而得到公差,最后写出数列的通项公式;(2)依照题意找出(1)中符合条件的数列,再用等差数列前项和公式求出数列的前项和.【详解】(1)因为等差数列,且,所以所以,又,所以,于是或设等差数列的公差为,则或,的通项公式为:或;(2)因为成等比数列,所以所以数列的前项和.【点睛】本题主要考查等差数列的性质、通项公式的求法以及等差数列前项和公式,注意分类讨论思想的应用.18、(1);(2).【解析】
(1)先根据已知求出公差d,即得的通项公式;(2)先证明数列是等比数列,再利用等比数列的前n项和公式求.【详解】(1)设等差数列的公差为,由已知得,则,将代入并化简得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以数列是首项为2,公比为4的等比数列.所以.【点睛】本题主要考查等差数列通项的求法,考查等比数列性质的证明和前n项和的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.19、(1);(2)【解析】
(1)根据诱导公式先化简每一项,然后即可得到最简结果;(2)利用“齐次”式的特点,分子分母同除以,将其化简为关于的形式即可求值.【详解】(1)原式,(2)原式【点睛】本题考查诱导公式和同角三角函数的基本关系的运用,难度较易.(1)利用诱导公式进行化简时,掌握“奇变偶不变”的实际含义进行化简即可;(2)求解形如的“齐次式”的值,注意采用分子分母同除以的方法,将其化简为关于的形式再求值.20、(1)(2)【解析】
(1)先计算所给数据距离、时间的平均值,,利用公式求,再利用回归方程求.(2)由(1)计算的个数,先求从6个中任取3个数据的总的取法,再计算抽取的3个数据恰有两个为有效运动数据的取法,利用古典概型概率计算公式可得所求.【详解】解:(1)依题意得,所以又因为,故线性回归方程为.(2)将的6个值,代入(1)中回归方程可知,前3个小于30,后3个大于30,所以满足分钟的有效运动数据的共有3个,设3个有效运动数据为,另3个不是有效运动数据为,则从6个数据中任取3个共有20种情况(或一一列举),其中,抽取的3个数据恰有两个为有效运动数据的有9种情况,即,,所以从这6个时间数据中任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同收尾过程 合同管理过程
- 赠汪伦课件教学
- 《刑法分论概述》课件
- 车辆指标租赁协议书
- 关于纳粹德国元首希特勒的历史资料课件
- ABB工业机器人应用技术 故障诊断与维护 课件任务3-8 工业机器人本体电路图解析
- 《生命与和平相爱好》课件
- 学生租房协议书(2篇)
- 2023年安徽省宿州市公开招聘警务辅助人员(辅警)笔试摸底备战测试(1)卷含答案
- 2023年湖北省襄樊市公开招聘警务辅助人员(辅警)笔试专项训练题试卷(3)含答案
- 教研组长培训会议
- 2024年新疆区公务员录用考试《行测》试题及答案解析
- 蒋诗萌小品《谁杀死了周日》台词完整版
- GB/T 44500-2024新能源汽车运行安全性能检验规程
- “趣”说产品设计(山东联盟)智慧树知到期末考试答案章节答案2024年青岛滨海学院
- 劳动教育智慧树知到期末考试答案章节答案2024年上海杉达学院
- 年产1万吨连续玄武岩纤维及其制品申请建设可行性研究报告
- 第11课《上课能专心》课件
- 志愿服务证明(多模板)
- 硫酸安全技术说明书MSDS
- 蔬菜大棚温度控制器设计
评论
0/150
提交评论