2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题含解析_第1页
2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题含解析_第2页
2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题含解析_第3页
2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题含解析_第4页
2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届甘肃省河西五市部分普通高中高一数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是()A. B.C.是数列中的最大值 D.数列无最小值2.已知函数向左平移个单位长度后,其图象关于轴对称,则的最小值为()A. B. C. D.3.已知,,是三条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,,,,,则B.若,,,,则C.若,,,,,则D.若,,,则4.在三棱柱中,平面,,,,E,F分别是,上的点,则三棱锥的体积为()A.6 B.12 C.24 D.365.已知平面平面,,点,,直线,直线,直线,,则下列四种位置关系中,不一定成立的是()A. B. C. D.6.已知,两条不同直线与的交点在直线上,则的值为()A.2 B.1 C.0 D.-17.将函数的图像上所有的点向左平移个单位长度,再把所得图像上各点的横坐标伸长到原来的3倍(纵坐标不变),得到函数的图像,则在区间上的最小值为()A. B. C. D.8.某个算法程序框图如图所示,如果最后输出的的值是25,那么图中空白处应填的是()A. B. C. D.9.公比为2的等比数列{}的各项都是正数,且=16,则=()A.1 B.2 C.4 D.810.执行下边的程序框图,如果输出的值为1,则输入的值为()A.0 B. C.0或 D.0或1二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角,,所对的边分别为,,,若的面积为,且,,成等差数列,则最小值为______.12.正项等比数列中,,,则公比__________.13.102,238的最大公约数是________.14.函数在区间上的最大值为,则的值是_____________.15.若,则=.16.某公司当月购进、、三种产品,数量分别为、、,现用分层抽样的方法从、、三种产品中抽出样本容量为的样本,若样本中型产品有件,则的值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在公差不为零的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,求数列的前项和.18.已知为的三内角,且其对边分别为.且(1)求的值;(2)若,三角形面积,求的值.19.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.20.在中,,且的边a,b,c所对的角分别为A,B,C.(1)求的值;(2)若,试求周长的最大值.21.已知等差数列中,,,数列中,,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据题干条件可得到数列>1,0<q<1,数列之和越加越大,故A错误;根据等比数列性质得到进而得到B正确;由前n项积的性质得到是数列中的最大值;从开始后面的值越来越小,但是都是大于0的,故没有最小值.【详解】因为条件:,,,可知数列>1,0<q<1,根据等比数列的首项大于0,公比大于0,得到数列项均为正,故前n项和,项数越多,和越大,故A不正确;因为根据数列性质得到,故B不对;前项之积为,所有大于等于1的项乘到一起,能够取得最大值,故是数列中的最大值.数列无最小值,因为从开始后面的值越来越小,但是都是大于0的,故没有最小值.故D正确.故答案为D.【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的解法,考查了推理能力与计算能力,属于中档题.2、A【解析】

根据函数的图象变换规律,三角函数的图象关于轴对称,即为偶函数.,求得的最小值.【详解】把函数向左平移个单位长度后.可得的图象.再根据所得图象关于轴对称,即为偶函数.所以即,当时,的值最小.所以的最小值为:故选:A【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,属于基础题.3、D【解析】

逐一分析选项,得到答案.【详解】A.根据条件可知,若,不能推出;B.若,就不能推出;C.条件中没有,所以不能推出;D.因为,,所以,因为,所以.【点睛】本题考查了面面平行的判断,属于基础题型,需要具有空间想象能力,以及逻辑推理能力.4、B【解析】

等体积法:.求出的面积和F到平面的距离,代入公式即可.【详解】由题意可得,的面积为,因为,,平面ABC,所以点C到平面的距离为,即点F到平面的距离为4,则三棱锥的体积为.故三棱锥的体积为12.【点睛】此题考察了三棱锥体积的等体积法,通过变化顶点和底面进行转化,属于较易题目.5、D【解析】

平面外的一条直线平行平面内的一条直线则这条直线平行平面,若两平面垂直则一个平面内垂直于交线的直线垂直另一个平面,主要依据这两个定理进行判断即可得到答案.【详解】如图所示:由于,,,所以,又因为,所以,故A正确,由于,,所以,故B正确,由于,,在外,所以,故C正确;对于D,虽然,当不一定在平面内,故它可以与平面相交、平行,不一定垂直,所以D不正确;故答案选D【点睛】本题考查线面平行、线面垂直、面面垂直的判断以及性质应用,要求熟练掌握定理是解题的关键.6、C【解析】

联立方程求交点,根据交点在在直线上,得到三角关系式,化简得到答案.【详解】交点在直线上观察分母和不是恒相等故故答案选C【点睛】本题考查了直线方程,三角函数运算,意在考查学生的计算能力.7、A【解析】

先按照图像变换的知识求得的解析式,然后根据三角函数求最值的方法,求得在上的最小值.【详解】图像上所有的点向左平移个单位长度得到,把所得图像上各点的横坐标伸长到原来的倍(纵坐标不变)得到,由得,故在区间上的最小值为.故选A.【点睛】本小题主要考查三角函数图像变换,考查三角函数值域的求法,属于基础题.8、B【解析】

分别依次写出每次循环所得答案,再与输出结果比较,得到答案.【详解】由程序框图可知,第一次循环后,,,;第二次循环后,,,;第三次循环后,,,;第四次循环后,,,;第五次循环后,,,此时,则图中空白处应填的是【点睛】本题主要考查循环结构由输出结果计算判断条件,难度不大.9、A【解析】试题分析:在等比数列中,由知,,故选A.考点:等比数列的性质.10、C【解析】

根据程序框图,转化为条件函数进行计算即可.【详解】程序对应的函数为y,若x≤0,由y=1得ex=1,得x=0,满足条件.若x>0,由y=2﹣lnx=1,得lnx=1,即x=e,满足条件.综上x=0或e,故选C.【点睛】本题主要考查程序框图的识别和应用,根据条件转化为分段函数是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

先根据,,成等差数列得到,再根据余弦定理得到满足的等式关系,而由面积可得,利用基本不等式可求的最小值.【详解】因为,,成等差数列,,故.由余弦定理可得.由基本不等式可以得到,当且仅当时等号成立.因为,所以,所以即,当且仅当时等号成立.故填4.【点睛】三角形中与边有关的最值问题,可根据题设条件找到各边的等式关系或角的等量关系,再根据边的关系式的结构特征选用合适的基本不等式求最值,也可以利用正弦定理把与边有关的目标代数式转化为与角有关的三角函数式后再求其最值.12、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.13、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.14、【解析】

利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.15、【解析】.16、.【解析】

利用分层抽样每层抽样比和总体的抽样比相等,列等式求出的值.【详解】在分层抽样中,每层抽样比和总体的抽样比相等,则有,解得,故答案为:.【点睛】本题考查分层抽样中的相关计算,解题时要充分利用各层抽样比与总体抽样比相等这一条件列等式求解,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)先根据已知求出公差d,即得的通项公式;(2)先证明数列是等比数列,再利用等比数列的前n项和公式求.【详解】(1)设等差数列的公差为,由已知得,则,将代入并化简得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以数列是首项为2,公比为4的等比数列.所以.【点睛】本题主要考查等差数列通项的求法,考查等比数列性质的证明和前n项和的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(2)【解析】

(1)利用正弦定理化简,并用三角形内角和定理以及两角和的正弦公式化简,求得,由此求得的大小.(2)利用三角形的面积公式求得,利用余弦定理列方程,化简求得的值.【详解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【点睛】本小题主要考查三角形的面积公式,考查正弦定理、余弦定理解三角形,考查运算求解能力,属于中档题.19、(1);(2)【解析】

(1)根据两圆对称,直径一样,只需圆心对称即可得圆C的标准方程;(2)设直线l的方程为y=﹣x+m与圆C联立方程组,利用韦达定理,设而不求的思想即可求解b范围,即截距的取值范围.【详解】(1)圆的圆心坐标为,半径为2设圆的圆心坐标为,由题意可知解得:由对称性质可得,圆的半径为2,所以圆的标准方程为:(2)设直线的方程为,联立得:,设直线与圆的交点,,由,得,(1)因为为钝角,所以,且直线不过点即满足,且又,,所以(2)由(1)式(2)式可得,满足,即,因为,所以直线在轴上的截距的取值范围是【点睛】本题考查直线与圆的位置关系,是中档题,解题时要认真审题,注意韦达定理的合理运用.20、(1)(2)【解析】

(1)利用三角公式化简得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【详解】(1)原式(2),时等号成立.周长的最大值为【点睛】本题考查了三角恒等变换,余弦定理,均值不等式,周长的最大值,意在考查学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论