版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省定远育才学校2025届高一数学第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设P是所在平面内的一点,,则()A. B. C. D.2.如图,,下列等式中成立的是()A. B.C. D.3.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.4.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.76.的内角的对边分别是,若,,,则()A. B. C. D.7.若,,,,则等于()A. B. C. D.8.数列的通项公式,则()A. B. C.或 D.不存在9.已知平面上四个互异的点、、、满足:,则的形状一定是()A.等边三角形 B.直角三角形 C.等腰三角形 D.钝角三角形10.已知等差数列的前项和为,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.终边经过点,则_____________12.若方程表示圆,则实数的取值范围是______.13.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.14.已知中,的对边分别为,若,则的周长的取值范围是__________.15.__________.16.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线和.(1)若,求实数的值;(2)若,求实数的值.18.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.19.土笋冻是闽南种广受欢迎的特色传统风味小吃某小区超市销售一款土笋冻,进价为每个15元,售价为每个20元.销售的方案是当天进货,当天销售,未售出的全部由厂家以每个10元的价格回购处理.根据该小区以往的销售情况,得到如图所示的频率分布直方图:(1)估算该小区土笋冻日需求量的平均数(同一组中的数据用该组区间的中点值代表);(2)已知该超市某天购进了150个土笋冻,假设当天的需求量为个销售利润为元.(i)求关于的函数关系式;(ii)结合上述频率分布直方图,以额率估计概率的思想,估计当天利润不小于650元的概率.20.记Sn为等比数列的前n项和,已知S2=2,S3=-6.(1)求的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列.21.已知数列满足:.(1)若为等差数列,求的通项公式;(2)若单调递增,求的取值范围;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】移项得.故选B2、B【解析】
本题首先可结合向量减法的三角形法则对已知条件中的进行化简,化简为然后化简并代入即可得出答案.【详解】因为,所以,所以,即,故选B.【点睛】本题考查的知识点是平面向量的基本定理,考查向量减法的三角形法则,考查数形结合思想与化归思想,是简单题.3、D【解析】
设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.4、C【解析】
通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.5、B【解析】
分析:由公式计算可得详解:设事件A为只用现金支付,事件B为只用非现金支付,则因为所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.6、B【解析】,所以,整理得求得或若,则三角形为等腰三角形,不满足内角和定理,排除.【考点定位】本题考查正弦定理和余弦定理的应用,考查运算能力和分类讨论思想.当求出后,要及时判断出,便于三角形的初步定型,也为排除提供了依据.如果选择支中同时给出了或,会增大出错率.7、C【解析】
利用同角三角函数的基本关系求出与,然后利用两角差的余弦公式求出值.【详解】,,则,,则,所以,,因此,,故选C.【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点:①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负;②利用已知角来配凑未知角,然后利用合适的公式求解.8、B【解析】
因为趋于无穷大,故,分离常数即可得出极限.【详解】解:因为的通项公式,要求,即求故选:B【点睛】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.9、C【解析】
由向量的加法法则和减法法则化简已知表达式,再由向量的垂直和等腰三角形的三线合一性质得解.【详解】设边的中点,则所以在中,垂直于的中线,所以是等腰三角形.故选C.【点睛】本题考查向量的线性运算和数量积,属于基础题.10、A【解析】
利用等差数列下标和的性质可计算得到,由计算可得结果.【详解】由得:本题正确选项:【点睛】本题考查等差数列性质的应用,涉及到等差数列下标和性质和等差中项的性质应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.12、.【解析】
把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.13、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.14、【解析】中,由余弦定理可得,∵,∴,化简可得.∵,∴,解得(当且仅当时,取等号).故.再由任意两边之和大于第三边可得,故有,故的周长的取值范围是,故答案为.点睛:由余弦定理求得,代入已知等式可得,利用基本不等式求得,故.再由三角形任意两边之和大于第三边求得,由此求得△ABC的周长的取值范围.15、【解析】
在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【详解】,故答案为:.【点睛】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.16、【解析】
先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)借助两直线垂直的充要条件建立方程求解;(2)借助两直线平行充要条件建立方程求解.【详解】(1)若,则.(2)若,则或2.经检验,时,与重合,时,符合条件,∴.【点晴】解析几何是运用代数的方法和知识解决几何问题一门学科,是数形结合的典范,也是高中数学的重要内容和高考的热点内容.解答本题时充分运用和借助题设条件中的垂直和平行条件,建立了含参数的直线的方程,然后再运用已知条件进行分析求解,从而将问题进行转化和化归,进而使问题获解.如本题的第一问中求参数的值时,是直接运用垂直的充要条件建立方程,这是方程思想的运用;再如第二问中求参数的值时也是运用了两直线平行的条件,但要注意的是这个条件不是两直线平行的充要条件,所以一定代回进行检验,这也是学生经常会出现错误的地方.18、(Ⅰ)或(Ⅱ)【解析】
(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【点睛】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)(2)(i)();(ii)【解析】
(1)设日需求量为,直接利用频率分布图中的平均数公式估算该小区土笋冻日需求量的平均数;(2)(i)分类讨论得();(ii)由(i)可知,利润,当且仅当日需求量,再利用互斥事件的概率和公式求解.【详解】解:(1)设日需求量为,依题意的频率为;的频率为;的频率为;的频率为.则与的频率为.故该小区土笋冻日需求量的平均数,.(2)(i)当时,;当时,.故()(ii)由(i)可知,利润,当且仅当日需求量.由频率分布直方图可知,日需求量的频率约为,以频率估计概率的思想,估计当天利润不小于元的概率为.【点睛】本题主要考查频率分布直方图中平均数的计算和分段函数解析式的求法,考查互斥事件的概率的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.20、(1);(2)见解析.【解析】试题分析:(1)由等比数列通项公式解得,即可求解;(2)利用等差中项证明Sn+1,Sn,Sn+2成等差数列.试题解析:(1)设的公比为.由题设可得,解得,.故的通项公式为.(2)由(1)可得.由于,故,,成等差数列.点睛:等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.21、(1)(2)【解析】
(1)设出的通项公式,根据计算出对应的首项和公差,即可求解出通项公式;(2)根据条件得到,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件工程师劳动合同样本
- 2024医院托管合作经营合同
- 2024家电产品配送合同书模板
- 2024标准委托代理合同格式
- 2024下载装饰工程承包合同书
- 2024年纸张产品购买合同
- 员工试用期间工作表现评估
- 2024年劳务派遣服务合作协议
- 600字代办委托协议范本
- 创业孵化基地租赁协议案例
- 人教版八年级上册英语全册教案(完整版)教学设计含教学反思
- 保洁服务技能比武方案
- 医疗机构肠道门诊工作自查用表参考范本
- T∕CGMA 033001-2018 压缩空气站能效分级指南
- 《汽车维护》教案全套 课程单元设计
- 佳能EOS5D基本操作说明
- 保险基础知识题库(按章节)
- 《击剑》专项课教学大纲
- 大客户管理办法
- 六年级组数学课例研修报告
- 《葡萄球菌肺炎》课件.ppt
评论
0/150
提交评论