广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题含解析_第1页
广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题含解析_第2页
广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题含解析_第3页
广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题含解析_第4页
广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市清溪晨光英才培训中心2025届高一数学第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知空间中两点和的距离为6,则实数的值为()A.1 B.9 C.1或9 D.﹣1或92.在正方体中,直线与平面所成角的正弦值为()A. B. C. D.3.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.44.计算的值为()A. B. C. D.5.已知一组数1,1,2,3,5,8,,21,34,55,按这组数的规律,则应为()A.11 B.12 C.13 D.146.已知函数,则有A.的图像关于直线对称 B.的图像关于点对称C.的最小正周期为 D.在区间内单调递减7.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.8.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.9.等差数列中,则()A.8 B.6 C.4 D.310.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.12.终边在轴上的角的集合是_____________________.13.某公司租地建仓库,每月土地占用费(万元)与仓库到车站的距离(公里)成反比.而每月库存货物的运费(万元)与仓库到车站的距离(公里)成正比.如果在距车站公里处建仓库,这两项费用和分别为万元和万元,由于地理位置原因.仓库距离车站不超过公里.那么要使这两项费用之和最小,最少的费用为_____万元.14.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.15.程的解为______.16.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,满足,,数列满足,,且.(1)求数列的通项公式;(2)求证:数列是等差数列,求数列的通项公式;(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.18.设数列的前项和.已知.(1)求数列的通项公式;(2)是否对一切正整数,有?说明理由.19.已知同一平面内的三个向量、、,其中(1,2).(1)若||=2,且与的夹角为0°,求的坐标;(2)若2||=||,且2与2垂直,求在方向上的投影.20.已知关于的不等式.(1)若不等式的解集为,求;(2)当时,解此不等式.21.在中,角、、的对边分别为、、,为的外接圆半径.(1)若,,,求;(2)在中,若为钝角,求证:;(3)给定三个正实数、、,其中,问:、、满足怎样的关系时,以、为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情兄下,用、、表示.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用空间两点间距离公式求出值即可。【详解】由两点之间距离公式,得:,化为:,解得:或9,选C。【点睛】空间两点间距离公式:。代入数据即可,属于基础题目。2、C【解析】

由题,连接,设其交平面于点易知平面,即(或其补角)为与平面所成的角,再利用等体积法求得AO的长度,即可求得的长度,可得结果.【详解】设正方体的边长为1,如图,连接,设其交平面于点,则易知,,又,所以平面,即得平面.在三棱锥中,由等体积法知,,即,解得,所以.连接,则(或其补角)为与平面所成的角.在中,.故选C.【点睛】本题考查了立体几何中线面角的求法,作出线面角是解题的关键,求高的长度会用到等体积法,属于中档题.3、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.4、D【解析】

直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.5、C【解析】

易得从第三项开始数列的每项都为前两项之和,再求解即可.【详解】易得从第三项开始数列的每项都为前两项之和,故.故选:C【点睛】该数列为“斐波那契数列”,从第三项开始数列的每项都为前两项之和,属于基础题.6、B【解析】

把函数化简后再判断.【详解】,由正切函数的性质知,A、C、D都错误,只有B正确.【点睛】本题考查二倍角公式和正切函数的性质.三角函数的性质问题,一般要把函数化为一个角的一个三角函数形式,然后结合相应的三角函数得出结论.7、D【解析】

,故选D.8、A【解析】

根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.9、D【解析】

设等差数列的公差为,根据题意,求解,进而可求得,即可得到答案.【详解】由题意,设等差数列的公差为,则,即,又由,故选D.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中设等差数列的公差为,利用等差数列的通项公式化简求解是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】

先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】以A,B,C为圆心,以1为半径作圆,与△ABC交出三个扇形,当P落在其内时符合要求,∴P==.12、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.13、8.2【解析】

设仓库与车站距离为公里,可得出、关于的函数关系式,然后利用双勾函数的单调性求出的最小值.【详解】设仓库与车站距离为公里,由已知,.费用之和,求中,由双勾函数的单调性可知,函数在区间上单调递减,所以,当时,取得最小值万元,故答案为:.【点睛】本题考查利用双勾函数求最值,解题的关键就是根据题意建立函数关系式,再利用基本不等式求最值时,若等号取不到时,可利用相应的双勾函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.14、.【解析】

先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.15、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.16、【解析】

由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,;(3)或.【解析】

(1)运用数列的递推式以及数列的和与通项的关系可得,再由等比数列的定义、通项公式可得结果;(2)对等式两边除以,结合等差数列的定义和通项公式,可得所求;(3)求得,由数列的错位相减法求和,可得,化简,即,对任意的成立,运用数列的单调性可得最大值,解不等式可得所求范围.【详解】(1),可得,即;时,,又,相减可得,即,则;(2)证明:,可得,可得是首项和公差均为1的等差数列,可得,即;(3),前n项和为,,相减可得,可得,,即为,即,对任意的成立,由,可得为递减数列,即n=1时取得最大值1−2=−1,可得,即或.【点睛】“错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.18、(1);(2)对一切正整数,有.【解析】

(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求;(2)对一切正整数n,有,考虑当时,,再由裂项相消求和,即可得证。【详解】(1)当时,两式做差得,,当时,上式显然成立,。(2)证明:当时,可得由可得即有<则当时,不等式成立。检验时,不等式也成立,综上对一切正整数n,有。【点睛】本题考查数列递推式,考查数列求和,考查裂项法的运用,确定数列的通项是关键.19、(1)(2,4)(2)【解析】

(1)由题意可得与共线,设出的坐标,根据||=2,求出参数的值,可得的坐标;

(2)由题意可得,再根据,求出

的值,可得在方向上的投影的值.【详解】(1)同一平面内的三个向量、、,其中(1,2),若||=2,且与的夹角为0°,则与共线,故可设(t,2t),t>0,∴2,∴t=2,即(2,4).(2)∵2||=||,即||.∵2与2垂直,∴(2)•(2)=2320,即83•20,即366,即•,∴在方向上的投影为.【点睛】本题主要考查两个向量坐标形式的运算,两个向量共线、垂直的性质,属于中档题.20、(1)2(2)时,,时,,时,不等式的解集为空集,时,,时,.【解析】

(1)根据不等式的解集和韦达定理,可列出关于a的方程组,解得a;(2)不等式化为,讨论a的取值,从而求得不等式的解集。【详解】(1)由题得,,解集为,则有,解得;(2)由题,:当时,不等式化为,解得;当时,不等式等价于,若,解得;若,解得,若,解得;当时,不等式等价于,解得或.综上,时,不等式的解集为,时,不等式的解集为,时,不等式的解集为空集,时,不等式的解集为,时,不等式的解集为.【点睛】本题考查一元二次不等式的解法与应用,以及通过讨论参数取值求不等式的解集,有一定的难度。21、(1);(2)见解析;(3)见解析.【解析】

(1)利用正弦定理求出的值,然后利用余弦定理求出的值;(2)由余弦定理得出可得证;(3)分类讨论判断三角形的形状与两边、的关系,以及与直径的大小的比较,分类讨论即可.【详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论