北京市西城66中2025届高一数学第二学期期末预测试题含解析_第1页
北京市西城66中2025届高一数学第二学期期末预测试题含解析_第2页
北京市西城66中2025届高一数学第二学期期末预测试题含解析_第3页
北京市西城66中2025届高一数学第二学期期末预测试题含解析_第4页
北京市西城66中2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城66中2025届高一数学第二学期期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知.为等比数列的前项和,若,,则()A.31 B.32 C.63 D.642.已知向量,且,则与的夹角为()A. B. C. D.3.下列函数中,在区间上为减函数的是A. B. C. D.4.直线是圆在处的切线,点是圆上的动点,则点到直线的距离的最小值等于()A.1 B. C. D.25.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A.“至少有一个黑球”与“都是黑球” B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球” D.“至少有一个黑球”与“都是红球”6.已知则()A. B. C. D.7.已知圆,圆,分别为圆上的点,为轴上的动点,则的最小值为()A. B. C. D.8.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.9.已知向量,,且与的夹角为,则()A. B.2 C. D.1410.已知,则的垂直平分线所在直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______12.等比数列前n项和为,若,则______.13.已知向量,,若,则实数__________.14.对于数列,若存在,使得,则删去,依此操作,直到所得到的数列没有相同项,将最后得到的数列称为原数列的“基数列”.若,则数列的“基数列”的项数为__________________.15.若直线与圆相交于,两点,且(其中为原点),则的值为________.16.已知在中,角A,B,C的对边分别为a,b,c,,,的面积等于,则外接圆的面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.18.如图,已知点和点,,且,其中为坐标原点.(1)若,设点为线段上的动点,求的最小值;(2)若,向量,,求的最小值及对应的的值.19.如图所示,平面平面,四边形为矩形,,点为的中点.(1)若,求三棱锥的体积;(2)点为上任意一点,在线段上是否存在点,使得?若存在,确定点的位置,并加以证明;若不存在,请说明理由.20.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.21.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

首先根据题意求出和的值,再计算即可.【详解】有题知:,解得,.故选:C【点睛】本题主要考查等比数列的性质以及前项和的求法,属于简单题.2、D【解析】

直接由平面向量的数量积公式,即可得到本题答案.【详解】设与的夹角为,由,,,所以.故选:D【点睛】本题主要考查平面向量的数量积公式.3、D【解析】试题分析:在区间上为增函数;在区间上先增后减;在区间上为增函数;在区间上为减函数,选D.考点:函数增减性4、D【解析】

先求得切线方程,然后用点到直线距离减去半径可得所求的最小值.【详解】圆在点处的切线为,即,点是圆上的动点,圆心到直线的距离,∴点到直线的距离的最小值等于.故选D.【点睛】圆中的最值问题,往往转化为圆心到几何对象的距离的最值问题.此类问题是基础题.5、C【解析】分析:利用对立事件、互斥事件的定义求解.详解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故答案为:C点睛:(1)本题主要考查互斥事件和对立事件的定义,意在考查学生对这些基础知识的掌握水平.(2)互斥事件指的是在一次试验中,不可能同时发生的两个事件,对立事件指的是在一次试验中,不可能同时发生的两个事件,且在一次试验中,必有一个发生的两个事件.注意理解它们的区别和联系.6、B【解析】

根据条件式,判断出,,且.由不等式性质、基本不等式性质或特殊值即可判断选项.【详解】因为所以可得,,且对于A,由对数函数的图像与性质可知,,所以A错误;对于B,由基本不等式可知,即由于,则,所以B正确;对于C,由条件可得,所以C错误;对于D,当时满足条件,但,所以D错误.综上可知,B为正确选项故选:B【点睛】本题考查了不等式性质的综合应用,根据基本不等式求最值,属于基础题.7、D【解析】

求出圆关于轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆的圆心距减去两个圆的半径和,即可求得的最小值,得到答案.【详解】如图所示,圆关于轴的对称圆的圆心坐标,半径为1,圆的圆心坐标为,,半径为3,由图象可知,当三点共线时,取得最小值,且的最小值为圆与圆的圆心距减去两个圆的半径之和,即,故选D.【点睛】本题主要考查了圆的对称圆的方程的求解,以及两个圆的位置关系的应用,其中解答中合理利用两个圆的位置关系是解答本题的关键,着重考查了数形结合法,以及推理与运算能力,属于基础题.8、D【解析】

求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.9、A【解析】

首先求出、,再根据计算可得;【详解】解:,,又,且与的夹角为,所以.故选:A【点睛】本题考查平面向量的数量积以及运算律,属于基础题.10、A【解析】

首先根据题中所给的两个点的坐标,应用中点坐标公式求得线段的中点坐标,利用两点斜率坐标公式求得,利用两直线垂直时斜率的关系,求得其垂直平分线的斜率,利用点斜式写出直线的方程,化简求得结果.【详解】因为,所以其中点坐标是,又,所以的垂直平分线所在直线方程为,即,故选A.【点睛】该题考查的是有关线段的垂直平分线的方程的问题,在解题的过程中,需要明确线段的垂直平分线的关键点一是垂直,二是平分,利用相关公式求得结果.二、填空题:本大题共6小题,每小题5分,共30分。11、①③④⑤【解析】

由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想12、【解析】

根据等比数列的性质得到成等比,从而列出关系式,又,接着用表示,代入到关系式中,可求出的值.【详解】因为等比数列的前n项和为,则成等比,且,所以,又因为,即,所以,整理得.故答案为:.【点睛】本题考查学生灵活运用等比数列的性质化简求值,是一道基础题。解决本题的关键是根据等比数列的性质得到成等比.13、【解析】

根据平面向量时,列方程求出的值.【详解】解:向量,,若,则,即,解得.故答案为:.【点睛】本题考查了平面向量的坐标运算应用问题,属于基础题.14、10【解析】

由题意可得,只需计算所有可能取值的个数即可.【详解】因为求的可能取值个数,由周期性,故只需考虑的情况即可.此时.一共19个取值,故只需分析,又由,故,,即不同的取值个数一共为个.即“基数列”分别为和共10项.故答案为10【点睛】本题主要考查余弦函数的周期性.注意到随着的增大的值周期变化,故只需考虑一个周期内的情况.15、【解析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.16、4π【解析】

利用三角形面积公式求解,再利用余弦定理求得,进而得到外接圆半径,再求面积即可.【详解】由,解得..解得.,解得.∴△ABC外接圆的面积为4π.故答案为:4π.【点睛】本题主要考查了解三角形中正余弦与面积公式的运用,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用余弦定理,解得的长;(Ⅱ)利用正弦定理得,计算得,,再利用为直角三角形,进而可计算的长.【详解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,则为直角三角形,所以,即,故.【点睛】本题考查余弦定理和正弦定理的简单应用,属于基础题.18、(1);(2),或.【解析】

(1)设,求出,把表示成关于的二次函数;(2)利用向量的坐标运算得,令把表示成关于的二次函数,再求最小值.【详解】(1)设,又,所以,,所以当时,取得最小值.(2)由题意得,,,则=,令,因为,所以,又,所以,,所以当时,取得最小值,即,解得或,所以当或时,取得最小值.【点睛】本题考查利用向量的坐标运算求向量的模和数量积,在求解过程中用到知一求二的思想方法,即已知三个中的一个,另外两个均可求出.19、(1);(2)存在,为中点,证明见解析.【解析】

(1)先根据面积垂直的性质得到平面;再由题中数据,结合棱锥体积公式,即可求出结果;(2)先由线面垂直的性质得到为中点时,有.再给出证明:取中点,连接,,,由线面垂直的判定定理,以及面面垂直的性质定理,证明平面,再由线面垂直的性质定理,即可得出结果.【详解】(1)因为四边形为矩形,所以,又平面平面,所以平面;又,所以,因此三棱锥的体积为:;(2)当为中点时,有.证明如下:取中点,连接,,.∵为的中点,为的中点,∴,又∵,∴,∴四点共面.∵平面平面,平面平面,平面,,∴平面,又平面,∴,∵,为的中点,∴,又,∴平面,又平面,∴,即.【点睛】本题主要考查求棱锥的体积,以及补全线线垂直的条件,熟记棱锥体积公式,以及线面垂直、面面垂直的判定定理与性质定理即可,属于常考题型.20、(1)见解析(2)0.7【解析】

(1)从代号为、、、、的5个人中任选2人,利用列举法能求出所有可能的结果.(2)、、三人为男性,、两人为女性,利用列举法求出选出的2人中不全为男性包含的基本事件有7种,由此能求出选出的2人中不全为男性的概率.【详解】(1)从代号为、、、、的5个人中任选2人.所有可能的结果有10种,分别为:,,,,,,,,,.(2)、、三人为男性,、两人为女性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论