版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省常德市桃源一中2025届数学高一下期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知满足,且,那么下列选项中一定成立的是()A. B. C. D.2.是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角3.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则()A. B. C. D.4.如图,正四面体,是棱上的动点,设(),分别记与,所成角为,,则()A. B. C.当时, D.当时,5.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.6.设全集,集合,则()A. B. C. D.7.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向8.已知,其中,若函数在区间内有零点,则实数的取值可能是()A. B. C. D.9.圆周运动是一种常见的周期性变化现象,可表述为:质点在以某点为圆心半径为r的圆周上的运动叫“圆周运动”,如图所示,圆O上的点以点A为起点沿逆时针方向旋转到点P,若连接OA、OP,形成一个角,当角,则()A. B. C. D.110.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于两个随机变量的一组数据如下表所示,且成线性相关,其回归直线方程为,则当变量时,变量的预测值应该是_________.23456467101312.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.13.已知向量为单位向量,向量,且,则向量的夹角为__________.14.在中,,则_____________15.如图所示,隔河可以看到对岸两目标,但不能到达,现在岸边取相距的两点,测得(在同一平面内),则两目标间的距离为_________.16.已知等差数列的前三项为,则此数列的通项公式为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆经过两点,且圆心在轴上.(1)求圆的方程;(2)若直线,且截轴所得纵截距为5,求直线截圆所得线段的长度.18.已知向量且,(1)求向量与的夹角;(2)求的值.19.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.20.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.21.已知函数.(1)求的最小正周期及单调递减区间;(2)若,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
首先根据题意得到,,结合选项即可找到答案.【详解】因为,所以.因为,所以.故选:D【点睛】本题主要考查不等式的性质,属于简单题.2、C【解析】
由题意,可知,所以角和角表示终边相同的角,即可得到答案.【详解】由题意,可知,所以角和角表示终边相同的角,又由表示第三象限角,所以是第三象限角,故选C.【点睛】本题主要考查了象限角的表示和终边相同角的表示,其中解答中熟记终边相同角的表示是解答本题的关键,着重考查了推理与计算能力,属于基础题.3、A【解析】
由正弦定理可得,再结合求解即可.【详解】解:由,又,则,由,则,故选:A.【点睛】本题考查了正弦定理,属基础题.4、D【解析】作交于时,为正三角形,,是与成的角,根据等腰三角形的性质,作交于,同理可得,当时,,故选D.5、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.
故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,6、B【解析】
先求出,由此能求出.【详解】∵全集,集合,∴,∴.故选B.【点睛】本题主要考查集合、并集、补集的运算等基本知识,体现运算能力、逻辑推理等数学核心素养.7、A【解析】
通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.8、D【解析】
求出函数,令,,根据不等式求解,即可得到可能的取值.【详解】由题:,其中,令,,若函数在区间内有零点,则有解,解得:当当当结合四个选项可以分析,实数的取值可能是.故选:D【点睛】此题考查根据函数零点求参数的取值范围,需要熟练掌握三角函数的图像性质,求出函数零点再讨论其所在区间列不等式求解.9、A【解析】
运用求任意角的三角函数值的步骤:化正、脱周、变锐角和求值,可得所求值.【详解】.故选:A.【点睛】本题考查任意角三角函数值的求法,属于基础题.10、A【解析】
根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、21.2【解析】
计算出,,可知回归方程经过样本中心点,从而求得,代入可得答案.【详解】由表中数据知,,,线性回归直线必过点,所以将,代入回归直线方程中,得,所以当时,.【点睛】本题主要考查回归方程的相关计算,难度很小.12、12【解析】
直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.13、【解析】因为,所以,所以,所以,则.14、【解析】
先由正弦定理得到,再由余弦定理求得的值.【详解】由,结合正弦定理可得,故设,,(),由余弦定理可得,故.【点睛】本题考查了正弦定理和余弦定理的运用,属于基础题.15、【解析】
在中,在中,分别由正弦定理求出,,在中,由余弦定理可得解.【详解】由图可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案为:【点睛】此题考查利用正余弦定理求解三角形,根据已知边角关系建立等式求解,此题求AB的长度可在多个三角形中计算,恰当地选择可以减少计算量.16、【解析】由题意可得,解得.
∴等差数列的前三项为-1,1,1.
则1.
故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设圆心的坐标为,利用求出的值,可确定圆心坐标,并计算出半径长,然后利用标准方程可写出圆的方程;(2)由,得出直线的斜率与直线的斜率相等,可得出直线的斜率,再由截轴所得纵截距为,可得出直线的方程,计算圆心到直线的距离,则.【详解】(1)设圆心,则,则所以圆方程:.(2)由于,且,则,则圆心到直线的距离为:.由于,【点睛】本题考查圆的方程的求解以及直线截圆所得弦长的计算,再解直线与圆相关的问题时,可充分利用圆的几何性质,利用几何法来处理,问题的核心在于计算圆心到直线的距离的计算,在计算弦长时,也可以利用弦长公式来计算。18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.19、(1);(2).【解析】
(1)利用正弦定理和和差公式计算得到答案.(2)利用代入余弦定理公式得到,计算面积得到答案.【详解】(1)∵是的内角,∴且又由正弦定理:和已知条件得:化简得:,又∵∴;(2)∵,是的中点,且,,,∴由余弦定理得:,代入化简得:又,即,可得:故所求的面积为.【点睛】本题考查了余弦定理,正弦定理,面积公式,意在考查学生的计算能力.20、(1)(2)【解析】
(1)计算得到,,利用正弦定理计算得到答案.(2)根据余弦定理得到,根据面积公式得到,得到答案.【详解】(1),.,.,,.(2)由余弦定理得:.,,,,.的周长为.【点睛】本题考查了正弦定理,余弦定理和面积公式,意在考查学生的计算能力.21、(1)最小正周期为,单调递减区间为(2).【解析】
(1)利用二倍角降幂公式和辅助角公式将函数的解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生态文明社会实践报告三篇
- 塑料、玻璃制品类医疗废物无害化处理作再生资源可行性研究报告
- 柴油机尾气净化催化器项目可行性研究报告
- 小学三年级上册数学教学反思简短(15篇)
- 商务合同制作规则学习的意义
- 第一学期德育工作总结
- 电脑办公软件基础知识
- 收银转正工作心得总结大全10篇
- 塑料制品公司文职人员聘用合同
- 高铁乘务员个人求职自荐信5篇
- 《预防未成年人犯罪》课件(图文)
- 业财融合背景下建筑企业财务管理转型中的不足及建议
- 计算机专业职业生涯规划书(14篇)
- GB/T 22838.5-2024卷烟和滤棒物理性能的测定第5部分:卷烟吸阻和滤棒压降
- 评标专家库系统系统总体建设方案
- 学校学生食堂“三防”制度
- 数学-湖湘名校教育联合体2024年下学期高二10月大联考试题和答案
- 2024年农村合作社管理制度范本(二篇)
- 2024年职业病防治考试题库附答案(版)
- 创新实践(理论)学习通超星期末考试答案章节答案2024年
- 青岛版科学三年级上册全册课件教材
评论
0/150
提交评论