版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省怀化市中方县第二中学2025届数学高一下期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正实数满足,则的最小值为A. B. C. D.2.已知,向量,则向量()A. B. C. D.3.已知向量与的夹角为,,,当时,实数为()A. B. C. D.4.的值为A. B. C. D.5.若关于x,y的方程组无解,则()A. B. C.2 D.6.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.97.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称8.在区间随机取一个实数,则的概率为()A. B. C. D.9.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.10.如图,有一辆汽车在一条水平的公路上向正西行驶,汽车在点测得公路北侧山顶的仰角为30°,汽车行驶后到达点测得山顶在北偏西30°方向上,且仰角为45°,则山的高度为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,若,则____;12.设,则函数是__________函数(奇偶性).13.已知变量,满足,则的最小值为________.14.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为________.15.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。16.已知正三棱锥的底面边长为,侧棱长为2,则该三棱锥的外接球的表面积_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列满足,,等差数列满足,,求数列的前项和.18.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.19.如图,在中,为边上一点,,若.(1)若是锐角三角形,,求角的大小;(2)若锐角三角形,求的取值范围.20.已知函数,.(1)求函数在上的单调递增区间;(2)在中,内角、、所对边的长分别是,若,,,求的面积的值.21.如图,在斜三棱柱中,侧面是边长为的菱形,平面,,点在底面上的射影为棱的中点,点在平面内的射影为证明:为的中点:求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
将变成,可得,展开后利用基本不等式求解即可.【详解】,,,,当且仅当,取等号,故选D.【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).2、A【解析】
由向量减法法则计算.【详解】.故选A.【点睛】本题考查向量的减法法则,属于基础题.3、B【解析】
利用平面向量数量积的定义计算出的值,由可得出,利用平面向量数量积的运算律可求得实数的值.【详解】,,向量与的夹角为,,,,解得.故选:B.【点睛】本题考查利用向量垂直求参数,考查计算能力,属于基础题.4、B【解析】
试题分析:由诱导公式得,故选B.考点:诱导公式.5、A【解析】
由题可知直线与平行,再根据平行公式求解即可.【详解】由题,直线与平行,故.故选:A【点睛】本题主要考查了二元一次方程组与直线间的位置关系,属于基础题.6、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.7、A【解析】
由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.8、C【解析】
利用几何概型的定义区间长度之比可得答案,在区间的占比为,所以概率为。【详解】因为的长度为3,在区间的长度为9,所以概率为。故选:C【点睛】此题考查几何概型,概率即是在部分占总体的占比,属于简单题目。9、B【解析】
利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【点睛】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。10、D【解析】
通过题意可知:,设山的高度,分别在中求出,最后在中,利用余弦定理,列出方程,解方程求出的值.【详解】由题意可知:.在中,.在中,.在中,由余弦定理可得:(舍去),故本题选D.【点睛】本题考查了余弦定理的应用,弄清题目中各个角的含义是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以.由正弦定理,知,所以==.考点:1、同角三角函数间的基本关系;2、正弦定理.12、偶【解析】
利用诱导公式将函数的解析式进行化简,即可判断出函数的奇偶性.【详解】,因此,函数为偶函数.故答案为:偶.【点睛】本题考查三角函数奇偶性的判断,解题的关键就是利用诱导公式对三角函数解析式进行化简,考查分析问题和解决问题的能力,属于基础题.13、0【解析】
画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.14、【解析】甲、乙两人下棋,只有三种结果,甲获胜,乙获胜,和棋;甲不输,即甲获胜或和棋,甲不输的概率为15、80【解析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.16、.【解析】
由题意推出球心O到四个顶点的距离相等,利用直角三角形BOE,求出球的半径,即可求出外接球的表面积.【详解】如图,∵正三棱锥A﹣BCD中,底面边长为,底面外接圆半径为侧棱长为2,BE=1,在三角形ABE中,根据勾股定理得到:高AE得到球心O到四个顶点的距离相等,O点在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半径为,表面积为:故答案为.【点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由等比数列易得公比和,进而可得等差数列的首项和公差,代入求和公式计算可得.【详解】解:∵等比数列满足,,
∴公比,
,
,
∴等差数列中,
∴公差,
∴数列的前项和.【点睛】本题考查等差数列的求和公式,涉及等比数列的通项公式,求出数列的首项和公差是解决问题的关键,属基础题.18、(1);(2)【解析】
(1)在中,先得到再利用正弦定理得到.(2)在中,计算,由余弦定理得到,再用余弦定理得到.【详解】(1)在中,,则,又由正弦定理,得(2)在中,,则,又即是等腰三角形,得.由余弦定理,得所以.在中,由余弦定理,得所以.【点睛】本题考查了正弦定理和余弦定理,意在考查学生利用正余弦定理解决问题的能力.19、(1);(2)【解析】
(1)利用正弦定理,可得,然后利用,可得结果.(2)【详解】在中,,又,,所以,又是锐角三角形所以,所以又,则,所以故(2)由,所以,即由锐角三角形,所以所以,所以故,则所以【点睛】本题主要考查正弦定理边角互换,重点掌握公式,难点在于对角度范围求取,属中档题.20、(1),;(2).【解析】
(1)首先把化成的型式,再根据三角函的单调性即可解决(2)根据(1)结果把代入可得A的大小,从而计算出B的大小,根据正弦定理以及面积公式即可解决。【详解】(1)因为,由,,得,,又,所以或,所以函数在上的递增区间为:,;(2)因为,∴,∴,∴,,∴,,∵,∴.∴,在三角形中由正弦定理得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《标准化与标准编写》课件
- 人教版八年级生物下册第一节植物的生殖教学课件
- 七年级写作专题作文如何选材课件
- 单位管理制度汇编大合集【职员管理】
- 单位管理制度合并汇编【人力资源管理】
- 单位管理制度呈现汇编员工管理十篇
- 《电脑常识赛宣讲》课件
- 《容积和容积单位》课件
- 《产品开发管理V》课件
- 三角形的初步认识课件
- 华东师大版科学七年级上册期末测试卷2
- 危机管理与应急响应
- 2024-2025学年北师版八年级物理上册期末考试综合测试卷
- 2023-2024学年广东省广州市白云区八年级(上)期末数学试卷及答案解析
- 热水器3c安全试验报告及第三方检测报告dsf65mx ts tx ws wx ys yx ms
- 南洋电工GSB1A型16锭高速编织机使用说明书
- 大管轮见习记录簿范本汇总
- 园区保安队长的工作职责
- 万能中国地图模板(可修改)
- 钢材购销合同
- PDT团队KPI指标库(完整版)
评论
0/150
提交评论