西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题含解析_第1页
西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题含解析_第2页
西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题含解析_第3页
西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题含解析_第4页
西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏日喀则区南木林高级中学2025届高一数学第二学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.2.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.3.已知、是平面上两个不共线的向量,则下列关系式:①;②;③;④.正确的个数是()A.4 B.3 C.2 D.14.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年5.圆与直线的位置关系是()A.相交 B.相切 C.相离 D.直线过圆心6.在中,若,,,则角的大小为()A.30° B.45°或135° C.60° D.135°7.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.48.“”是“直线:与直线:垂直”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.在中,若,则()A. B. C. D.10.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.12.在中,,点在边上,若,的面积为,则___________13.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.14.若直线与直线平行,则实数a的值是________.15.在中,角、、所对的边为、、,若,,,则角________.16.已知向量,且,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,函数.(1)若且,求;(2)求函数的最小正周期T及单调递增区间.18.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.19.数列中,,.前项和满足.(1)求(用表示);(2)求证:数列是等比数列;(3)若,现按如下方法构造项数为的有穷数列,当时,;当时,.记数列的前项和,试问:是否能取整数?若能,请求出的取值集合:若不能,请说明理由.20.某同学假期社会实践活动选定的课题是“节约用水研究”.为此他购买了电子节水阀,并记录了家庭未使用电子节水阀20天的日用水量数据(单位:)和使用了电子节水阀20天的日用水量数据,并利用所学的《统计学》知识得到了未使用电子节水阀20天的日平均用水量为0.48,使用了电子节水阀20天的日用水量数据的频率分布直方图如下图:(1)试估计该家庭使用电子节水阀后,日用水量小于0.35的概率;(2)估计该家庭使用电子节水阀后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)21.已知圆C的方程是(x-1)2+(y-1)2=4,直线l的方程为y=x+m,求当m为何值时,(1)直线平分圆;(2)直线与圆相切.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.2、B【解析】

分析:作图,D为MO与球的交点,点M为三角形ABC的中心,判断出当平面时,三棱锥体积最大,然后进行计算可得.详解:如图所示,点M为三角形ABC的中心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的中心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型.3、C【解析】

根据数量积的运算性质对选项进行逐一判断,即可得到答案.【详解】①.,满足交换律,正确.②.,满足分配律,正确.③.,所以不正确.④.,

,可正可负可为0,所以④不正确.故选:C【点睛】本题考查向量数量积的运算性质,属于中档题4、C【解析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】

求出圆心到直线的距离与半径比较.【详解】圆的圆心是,半径为1,圆心到直线即的距离为,直线与圆相切.故选:B.【点睛】本题考查直线与圆人位置关系,判断方法是:利用圆心到直线的距离与半径的关系判断.6、B【解析】

利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.7、B【解析】

在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.8、A【解析】试题分析:由题意得,直线与直线垂直,则,解得或,所以“”是“直线与直线垂直”的充分不必要条件,故选A.考点:两条直线的位置关系及充分不必要条件的判定.9、A【解析】

由已知利用余弦定理即可解得的值.【详解】解:,,,由余弦定理可得:,解得:,故选:A.【点睛】本题主要考查余弦定理在解三角形中的应用,属于基础题.10、A【解析】

根据题意,原题等价于,再讨论即可得到结论.【详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【点睛】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.12、【解析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.13、【解析】

先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.14、0【解析】

解方程即得解.【详解】因为直线与直线平行,所以,所以或.当时,两直线重合,所以舍去.当时,两直线平行,满足题意.故答案为:【点睛】本题主要考查两直线平行的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.15、.【解析】

利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.16、【解析】

先由向量共线,求出,再由向量模的坐标表示,即可得出结果.【详解】因为,且,所以,解得,所以,因此.故答案为【点睛】本题主要考查求向量的模,熟记向量共线的坐标表示,以及向量模的坐标表示即可,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最小正周期,的单调递增区间为:.【解析】

(1)计算平面向量的数量积得出函数的解析式,求出时的值;(2)根据的解析式,求出它的最小正周期T及单调递增区间.【详解】函数时,,解得又;(2)函数它的最小正周期:令故:的单调递增区间为:【点睛】本题考查了正弦型函数的性质,考查了学生综合分析,转化与划归,数形结合的能力,属于中档题.18、(1);(2).【解析】

(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.19、(1)(2)证明见详解.(3)能取整数,此时的取值集合为.【解析】

(1)利用递推关系式,令,通过,求出即可.(2)递推关系式转化为:,化简推出数列是等比数列.(3)由,求出,求出,得到通项公式,然后求解的分母与分子,讨论要使取整数,需为整数,推出的取值集合为时,取整数【详解】解:(1)令,则,将,代入,有.解得:.(2)由得,化简得,又,是等比数列.(3)由,,又是等比数列,,,①当时,依次为,.②当时,,,,要使取整数,需为整数,令,,,要么都为整数,要么都不是整数,又所以当且仅当为奇数时,为整数,即的取值集合为时,取整数.【点睛】本题主要考查利用递推公式结合,为判断等比数列,考查数列前项和的比的问题的转化与化归思想的综合性解题能力.20、(1)0.48(2)()【解析】

(1)计算日用水量小于0.35时,频率分布直方图中长方形面积之和即可;(2)根据频率分布直方图计算出使用电子节水阀后日均节水量的平均值,再求出年节水量即可.【详解】(1)根据直方图,该家庭使用电子节水阀后20天日用水量小于0.35的频率为,因此该家庭使用电子节水阀后日用水量小于0.35的概率的估计值为0.48.(2)该家庭使用了电子节水阀后20天日用水量的平均数为.估计使用电子节水阀后,一年可节省水().【点睛】本题考查对频率分布直方图的理解,以及由频率分布直方图计算平均数,属基础题.21、(1)m=0;(2)m=±2.【解析】试题分析:(1)直线平分圆,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论