云南省怒江州贡山三中2025届高一数学第二学期期末监测试题含解析_第1页
云南省怒江州贡山三中2025届高一数学第二学期期末监测试题含解析_第2页
云南省怒江州贡山三中2025届高一数学第二学期期末监测试题含解析_第3页
云南省怒江州贡山三中2025届高一数学第二学期期末监测试题含解析_第4页
云南省怒江州贡山三中2025届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省怒江州贡山三中2025届高一数学第二学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边分别为,,,若,则最大角的余弦值为()A. B. C. D.2.已知,,且,则()A.1 B.2 C.3 D.43.执行如下的程序框图,则输出的是()A. B.C. D.4.某小组共有5名学生,其中男生3名,女生2名,现选举2名代表,则恰有1名女生当选的概率为()A. B. C. D.5.方程的解集为()A.B.C.D.6.已知a,b是正实数,且,则的最小值为()A. B. C. D.7.函数的最大值为()A. B. C. D.8.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.9.已知的三个内角所对的边分别为,满足,且,则的形状为()A.等边三角形 B.等腰直角三角形C.顶角为的等腰三角形 D.顶角为的等腰三角形10.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数那么的值为.12.若向量,,且,则实数______.13.已知等边三角形的边长为2,点P在边上,点Q在边的延长线上,若,则的最小值为______.14.设变量x、y满足约束条件,则目标函数的最大值为_______.15.某四棱锥的三视图如图所示,如果网格纸上小正方形的边长为1,那么该四棱锥最长棱的棱长为.16.已知数列的通项公式为,是其前项和,则_____.(结果用数字作答)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,内角,,所对的边分别为,,.若.(1)求角的度数;(2)当时,求的取值范围.18.在中,角所对的边分别为,且.(1)求;(2)若,求的周长.19.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔,速度为,飞行员在处先看到山顶的俯角为18°30′,经过后又在处看到山顶的俯角为81°(1)求飞机在处与山顶的距离(精确到);(2)求山顶的海拔高度(精确到)参考数据:,20.在中,分别是角的对边.(1)求角的值;(2)若,且为锐角三角形,求的范围.21.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

设,由余弦定理可求出.【详解】设,所以最大的角为,故选D.【点睛】本题主要考查了余弦定理,大边对大角,属于中档题.2、D【解析】

根据向量的平行可得4m=3m+4,解得即可.【详解】,,且,则,解得,故选D.【点睛】本题考查了向量平行的充要条件,考查了运算求解能力以及化归与转化思想,属于基础题.3、A【解析】

列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.4、B【解析】

记三名男生为,两名女生为,分别列举出基本事件,得出基本事件总数和恰有1名女生当选包含的基本事件个数,即可得解.【详解】记三名男生为,两名女生为,任选2名所有可能情况为,共10种,恰有一名女生的情况为,共6种,所以恰有1名女生当选的概率为.故选:B【点睛】此题考查根据古典概型求概率,关键在于准确计算出基本事件总数,和某一事件包含的基本事件个数.5、C【解析】

利用反三角函数的定义以及正切函数的周期为,即可得到原方程的解.【详解】由,根据正切函数图像以及周期可知:,故选:C【点睛】本题考查了反三角函数的定义以及正切函数的性质,需熟记正切函数的图像与性质,属于基础题.6、B【解析】

设,则,逐步等价变形,直到可以用基本不等式求最值,即可得到本题答案.【详解】由,得,设,则,所以.故选:B【点睛】本题主要考查利用基本不等式求最值,化简变形是关键,考查计算能力,属于中等题.7、D【解析】

函数可以化为,设,由,则,即转化为求二次函数在上的最大值.【详解】由设,由,则.即求二次函数在上的最大值所以当,即时,函数取得最大值.故选:D【点睛】本题考查的二次型函数的最值,属于中档题.8、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.9、D【解析】

先利用同角三角函数基本关系得,结合正余弦定理得进而得B,再利用化简得,得A值进而得C,则形状可求【详解】由题即,由正弦定理及余弦定理得即故整理得,故故为顶角为的等腰三角形故选D【点睛】本题考查利用正余弦定理判断三角形形状,注意内角和定理,三角恒等变换的应用,是中档题10、C【解析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.12、【解析】

根据,两个向量平行的条件是建立等式,解之即可.【详解】解:因为,,且所以解得故答案为:【点睛】本题主要考查两个向量坐标形式的平行的充要条件,属于基础题.13、【解析】

以为轴建立平面直角坐标系,设,用t表示,求其最小值即可得到本题答案.【详解】过点A作BC的垂线,垂足为O,以为轴建立平面直角坐标系.作PM垂直BC交于点M,QH垂直y轴交于点H,CN垂直HQ交于点N.设,则,故有所以,,当时,取最小值.故答案为:【点睛】本题主要考查利用建立平面直角坐标系解决向量的取值范围问题.14、3【解析】

可通过限定条件作出对应的平面区域图,再根据目标函数特点进行求值【详解】可行域如图所示;则可化为,由图象可知,当过点时,有最大值,则其最大值为:故答案为:3.【点睛】线性规划问题关键是能正确画出可行域,目标函数可由几何意义确定具体含义(最值或斜率)15、【解析】

先通过拔高法还原三视图为一个四棱锥,再根据图像找到最长棱计算即可。【详解】根据拔高法还原三视图,可得斜棱长最长,所以斜棱长为。【点睛】此题考查简单三视图还原,关键点通过拔高法将三视图还原易求解,属于较易题目。16、.【解析】

由题意知,数列的偶数项成等差数列,奇数列成等比数列,然后利用等差数列和等比数列的求和公式可求出的值.【详解】由题意可得,故答案为.【点睛】本题考查奇偶分组求和,同时也考查等差数列求和以及等比数列求和,解题时要得出公差和公比,同时也要确定出对应的项数,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)根据余弦定理即可解决.(2)根据向量的三角形法则即可解决.【详解】(1)因为,所以得,所以,所以,因为所以;(2)取的中点,则,,所以所以,从而由平行四边形性质有故.【点睛】本题主要考查了余弦定理以及向量的三角形法则,其中第二问用了完全平方以及加减消元的思想,是本题的一个难点.解决本题的关键是画一个三角形结合三角形进行分析.18、(1);(2)【解析】

分析:(1)利用正弦定理,求得,即可求出A,根据已知条件算出,再由大边对大角,即可求出C;(2)易得,根据两角和正弦公式求出,再由正弦定理求出和,即可得到答案.详解:解:(1)由正弦定理得,又,所以,从而,因为,所以.又因为,,所以.(2)由(1)得由正弦定理得,可得,.所以的周长为.点睛:本题主要考查正弦定理在解三角形中的应用.正弦定理是解三角形的有力工具,其常见用法有以下四种:(1)已知两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)已知两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.19、(1)14981m(2)【解析】

(1)先求出飞机在150秒内飞行的距离,然后由正弦定理可得;(2)飞机,山顶的海拔的差为,则山顶的海拔高度为.【详解】解:(1)飞机在150秒内飞行的距离为,在中,由正弦定理,有,∴;(2)飞机,山顶的海拔的差为,,即山顶的海拔高度为.【点睛】本题主要考查正弦定理的应用,考查了计算能力,属于中档题.20、(1);(2)【解析】

(1)由题结合余弦定理得角的值;(2)由正弦定理可知,,得,利用三角恒等变换得A的函数即可求范围【详解】(1)由题意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即,∴,又∵为锐角三角形,∴,则即,所以,即,综上的取值范围为.【点睛】本题考查正余弦定理解三角形,考查三角恒等变换,注意锐角三角形的应用,准确计算是关键,是中档题21、(1)(2)使的面积等于4的点有2个【解析】

(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论