版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省沂水县高一下数学期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π22.已知直线经过两点,则的斜率为()A. B. C. D.3.某学校有教师200人,男学生1200人,女学生1000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,若女学生一共抽取了80人,则n的值为()A.193 B.192 C.191 D.1904.若,则下列不等式恒成立的是A. B. C. D.5.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.6.在等比数列中,则()A.81 B. C. D.2437.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.8.同时掷两枚骰子,所得点数之和为5的概率为()A. B. C. D.9.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面10.连续抛掷一枚质地均匀的硬币10次,若前4次出现正面朝上,则第5次出现正面朝上的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,是第三象限角,则.12.设等差数列的前项和为,则______.13.已知两点,则线段的垂直平分线的方程为_________.14.已知等比数列的公比为,它的前项积为,且满足,,,给出以下四个命题:①;②;③为的最大值;④使成立的最大的正整数为4031;则其中正确命题的序号为________15.已知等差数列的前项和为,若,则_______.16.设为数列的前项和,则__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?18.已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.19.已知向量,其中.函数的图象过点,点与其相邻的最高点的距离为1.(Ⅰ)求函数的单调递减区间;(Ⅱ)计算的值;(Ⅲ)设函数,试讨论函数在区间[0,3]上的零点个数.20.已知函数.(1)求函数的最小正周期;(2)求在区间上的最大值和最小值.21.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.2、A【解析】
直接代入两点的斜率公式,计算即可得出答案。【详解】故选A【点睛】本题考查两点的斜率公式,属于基础题。3、B【解析】
按分层抽样的定义,按比例计算.【详解】由题意,解得.故选:B.【点睛】本题考查分层抽样,属于简单题.4、D【解析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D5、C【解析】
利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【点睛】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】解:因为等比数列中,则,选A7、C【解析】
在中,利用正弦定理求出即可.【详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【点睛】本题考查了正弦定理的应用及相关的运算问题,属于基础题.8、C【解析】
求出基本事件空间,找到符合条件的基本事件,可求概率.【详解】同时掷两枚骰子,所有可能出现的结果有:共有36种,点数之和为5的基本事件有:共4种;所以所求概率为.故选C.【点睛】本题主要考查古典概率的求解,侧重考查数学建模的核心素养.9、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.10、D【解析】
抛掷一枚质地均匀的硬币有两种情况,正面朝上和反面朝上的概率都是,与拋掷次数无关.【详解】解:抛掷一枚质地均匀的硬币,有正面朝上和反面朝上两种可能,概率均为,与拋掷次数无关.故选:D.【点睛】本题考查了概率的求法,考查了等可能事件及等可能事件的概率知识,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.12、【解析】
设等差数列的公差为,由,可求出的值,结合,可以求出的值,利用等差数列的通项公式,可得,再利用,可以求出的值.【详解】设等差数列的公差为,因为,所以,又因为,所以,而.【点睛】本题考查了等差数列的通项公式以及等差数列的前项和公式,考查了数学运算能力.13、【解析】
求出直线的斜率和线段的中点,利用两直线垂直时斜率之积为可得出线段的垂直平分线的斜率,然后利用点斜式可写出中垂线的方程.【详解】线段的中点坐标为,直线的斜率为,所以,线段的垂直平分线的斜率为,其方程为,即.故答案为.【点睛】本题考查线段垂直平分线方程的求解,有如下两种方法求解:(1)求出中垂线的斜率和线段的中点,利用点斜式得出中垂线所在直线方程;(2)设动点坐标为,利用动点到线段两端点的距离相等列式求出动点的轨迹方程,即可作为中垂线所在直线的方程.14、②③【解析】
利用等比数列的性质,可得,得出,进而判断②③④,即可得到答案.【详解】①中,由等比数列的公比为,且满足,,,可得,所以,且所以是错误的;②中,由等比数列的性质,可得,所以是正确的;③中,由,且,,所以前项之积的最大值为,所以是正确的;④中,,所以正确.综上可得,正确命题的序号为②③.故答案为:②③.【点睛】本题主要考查了等比数列的性质的应用,其中解答中熟记等比数列的性质,合理推算是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】
先由题意,得到,求出,再由等差数列的性质,即可得出结果.【详解】因为等差数列的前项和为,若,则,所以,因此.故答案为:【点睛】本题主要考查等差数列的性质的应用,熟记等差数列的求和公式,以及等差数列的性质即可,属于常考题型.16、【解析】
当时,;当时,,即,若为偶数,则为奇数);若为奇数,则,故是偶数).因为,,所以,同理可得,,,所以,应选答案.点睛:本题运用演绎推理的思维方法,分别探求出数列各项的规律(成等比数列),再运用等比数列的求和公式,使得问题简捷、巧妙获解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、方式一最大值【解析】
试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.18、(1),(2)【解析】
(1)根据与的关系,利用临差法得到,知公差为3;再由代入递推关系求;(2)观察数列的通项公式,相邻两项的和有规律,故采用并项求和法,求其前项和.【详解】(1)对任意,有,①当时,有,解得或.当时,有.②①-②并整理得.而数列的各项均为正数,.当时,,此时成立;当时,,此时,不成立,舍去.,.(2).【点睛】已知与的递推关系,利用临差法求时,要注意对下标与分两种情况,即;数列求和时要先观察通项特点,再决定采用什么方法.19、(Ⅰ),;(Ⅱ)2028;(Ⅲ)详见解析.【解析】
(Ⅰ)由数量积的坐标运算可得f(x),由题意求得ω,再由函数f(x)的图象过点B(2,2)列式求得.则函数解析式可求,由复合函数的单调性求得f(x)的单调递增区间;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.进一步可得结论;(Ⅲ)g(x)=f(x)﹣m﹣2,函数g(x)在[0,3]上的零点个数,即为函数y=sin的图象与直线y=m在[0,3]上的交点个数.数形结合得答案.【详解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,则点B(2,2)为函数f(x)的图象的一个最高点.∵点B与其相邻的最高点的距离为2,∴,得ω.∵函数f(x)的图象过点B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的单调递减区间是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期为2的周期函数,且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+2=2028;(Ⅲ)g(x)=f(x)﹣m﹣2,函数g(x)在[0,3]上的零点个数,即为函数y=sin的图象与直线y=m在[0,3]上的交点个数.在同一直角坐标系内作出两个函数的图象如图:①当m>2或m<﹣2时,两函数的图象在[0,3]内无公共点;②当﹣2≤m<0或m=2时,两函数的图象在[0,3]内有一个共点;③当0≤m<2时,两函数的图象在[0,3]内有两个共点.综上,当m>2或m<﹣2时,函数g(x)在[0,3]上无零点;②当﹣2≤m<0或m=2时,函数g(x)在[0,3]内有2个零点;③当0≤m<2时,函数g(x)在[0,3]内有2个零点.【点睛】本题考查三角函数中的恒等变换应用,考查数量积的坐标运算,体现了数形结合的解题思想方法,是中档题.20、(1);(2),.【解析】
(1)利用二倍角余弦、正弦公式以及辅助角公式将函数的解析式化简,然后利用周期公式可计算出函数的最小正周期;(2)由计算出的取值范围,然后利用正弦函数的性质可得出函数在区间上的最大值和最小值.【详解】(1),因此,函数的最小正周期为;(2),,当时,函数取得最小值;当时,函数取得最大值.【点睛】本题考查三角函数周期和最值的计算,同时也考查了利用二倍角公式以及辅助角公式化简,在求解三角函数在定区间上的最值问题时,首先
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江门货运资格证500道题库
- 单车位租赁合同范例
- 婚礼跟妆合同范例
- 2025年新疆货运车从业考试题
- 显微镜购买合同范例
- 2025年宜春年货运从业资格证考试从业从业资格资格题库及答案
- 天府新区航空旅游职业学院《环境设计专题》2023-2024学年第一学期期末试卷
- 《12 图文并茂-精确设置图片尺寸》教学实录-2023-2024学年清华版(2012)信息技术三年级下册
- 2025年山东货物运输从业资格考试答题软件
- 2025年凉山州驾驶资格证模拟考试
- 低空经济产业园项目可行性研究报告
- 中国神话故事绘本仓颉造字
- MOOC 心理健康与创新能力-电子科技大学 中国大学慕课答案
- 中华传统造型的艺术之美-中国美术史专题精讲智慧树知到期末考试答案章节答案2024年山东工艺美术学院
- 黄蒿界矿井及选煤厂建设项目环境影响报告书
- 2023-2024学年高一下学期家长会 课件
- 感动中国人物张桂梅心得体会(30篇)
- 知识点总结(知识清单)-2023-2024学年人教PEP版英语六年级上册
- 社会医学课件第2章医学模式-2024鲜版
- 德勤测评能力测试题及答案
- 《囚歌》教学课件
评论
0/150
提交评论