2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题含解析_第1页
2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题含解析_第2页
2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题含解析_第3页
2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题含解析_第4页
2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省楚雄彝族自治州高一数学第二学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,则()A. B. C. D.2.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O为大圆圆心,线段AB为小圆直径.△AOB的三边所围成的区域记为I,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A. B. C. D.3.设有直线和平面,则下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,l∥β,则α∥βC.若α⊥β,m⊂α,则m⊥β D.若α⊥β,m⊥β,m⊄α,则m∥α4.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.5.已知函数,若实数满足,则的取值范围是()A. B. C. D.6.已知圆与直线切于点,则直线的方程为()A. B. C. D.7.下列函数中,在区间上为增函数的是().A. B. C. D.8.二进制是计算机技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则“借一当二”。当前的计算机系统使用的基本上是二进制系统,计算机中的二进制则是一个非常微小的开关,用1来表示“开”,用0来表示“关”。如图所示,把十进制数1010化为二进制数(1010)2,十进制数9910化为二进制数11000112,把二进制数(10110A.932 B.931 C.109.已知且,则为()A. B. C. D.10.用长为4,宽为2的矩形做侧面围成一个圆柱,此圆柱轴截面面积为()A.8 B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列的前n项和,则数列的通项公式是______.12.已知在数列中,,,则数列的通项公式______.13.直线与圆交于两点,若为等边三角形,则______.14.定义在上的函数,对任意的正整数,都有,且,若对任意的正整数,有,则___________.15.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.16.数列满足,则数列的前6项和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点,求的边上的中线所在的直线方程.18.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.19.在△ABC中,角A,B,C所对的边分别为a,b,c,且acosC+ccosA=2bcosA.

(1)求角A的值;

(2)若,,求△ABC的面积S.20.已知向量.(1)若,求的值;(2)当时,求与夹角的余弦值.21.已知等差数列的前n项和为,且,.(1)求;(2)求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。2、D【解析】

设OA=1,则AB,分别求出三个区域的面积,由测度比是面积比得答案.【详解】设OA=1,则AB,,以AB中点为圆心的半圆的面积为,以O为圆心的大圆面积的四分之一为,以AB为弦的大圆的劣弧所对弓形的面积为π﹣1,黑色月牙部分的面积为π﹣(π﹣1)=1,图Ⅲ部分的面积为π﹣1.设整个图形的面积为S,则p1,p1,p3.∴p1=p1>p3,故选D.【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.3、D【解析】

在A中,m与n相交、平行或异面;在B中,α与β相交或平行;在C中,m⊥β或m∥β或m与β相交;在D中,由直线与平面垂直的性质与判定定理可得m∥α.【详解】由直线m、n,和平面α、β,知:对于A,若m∥α,n∥α,则m与n相交、平行或异面,故A错误;对于B,若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交,故B错误;对于中,若α⊥β,α⊥β,m⊂α,则m⊥β或m∥β或m与β相交,故C错误;对于D,若α⊥β,m⊥β,m⊄α,则由直线与平面垂直的性质与判定定理得m∥α,故D正确.故选D.【点睛】本题考查了命题真假的判断问题,考查了空间线线、线面、面面的位置关系的判定定理及推论的应用,体现符号语言与图形语言的相互转化,是中档题.4、D【解析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.5、B【解析】

求出函数的定义域,分析函数的单调性与奇偶性,将所求不等式变形为,然后利用函数的单调性与定义域可得出关于实数的不等式组,即可解得实数的取值范围.【详解】对于函数,有,解得,则函数的定义域为,定义域关于原点对称,,所以,函数为奇函数,由于函数在区间上为增函数,函数在区间上为减函数,所以,函数在上为增函数,由得,所以,,解得.因此,实数的取值范围是.故选:B.【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.6、A【解析】

利用点与圆心连线的直线与所求直线垂直,求出斜率,即可求过点与圆C相切的直线方程;【详解】圆可化为:,显然过点的直线不与圆相切,则点与圆心连线的直线斜率为,则所求直线斜率为,代入点斜式可得,整理得。故选A.【点睛】本题考查直线方程,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.7、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.8、D【解析】

利用古典概型的概率公式求解.【详解】二进制的后五位的排列总数为25二进制的后五位恰好有三个“1”的个数为C5由古典概型的概率公式得P=10故选:D【点睛】本题主要考查排列组合的应用,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】由题意得,因为,即,所以,又,又,且,所以,故选B.10、B【解析】

分别讨论当圆柱的高为4时,当圆柱的高为2时,求出圆柱轴截面面积即可得解.【详解】解:当圆柱的高为4时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,当圆柱的高为2时,设圆柱的底面半径为,则,则,则圆柱轴截面面积为,综上所述,圆柱的轴截面面积为,故选:B.【点睛】本题考查了圆柱轴截面面积的求法,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

时,,利用时,可得,最后验证是否满足上式,不满足时候,要写成分段函数的形式.【详解】当时,,当时,=,又时,不适合,所以.【点睛】本题考查了由求,注意使用求时的条件是,所以求出后还要验证适不适合,如果适合,要将两种情况合成一种情况作答,如果不适合,要用分段函数的形式作答.属于中档题.12、【解析】

通过变形可知,累乘计算即得结论.【详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【点睛】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.13、或【解析】

根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.14、【解析】

根据条件求出的表达式,利用等比数列的定义即可证明为等比数列,即可求出通项公式.【详解】令,得,则,,令,得,则,,令,得,即,则,即所以,数列是等比数列,公比,首项.所以,故答案为:【点睛】本题主要考查等比数列的判断和证明,综合性较强,考查学生的计算能力,属于难题.15、【解析】

试题分析:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个正方形,边长是2,四棱锥的一条侧棱和底面垂直,且这条侧棱长是2,这样在所有的棱中,连接与底面垂直的侧棱的顶点与相对的底面的顶点的侧棱是最长的长度是,考点:三视图点评:本题考查由三视图还原几何体,所给的是一个典型的四棱锥,注意观察三视图,看出四棱锥的一条侧棱与底面垂直.16、84【解析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

设边的中点,则由中点公式可得:,即点坐标为所以边上的中线先的斜率则由直线的斜截式方程可得:这就是所求的边上的中线所在的直线方程.18、(1);(2).【解析】

(1)计算出的坐标,然后利用共线向量的坐标表示列出等式求出实数的值;(2)求出和,从而可得出在方向上的投影为.【详解】(1),,,,,,解得;(2),,在方向上的投影.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标运算以及投影的计算,在解题时要弄清楚这些知识点的定义以及坐标运算律,考查计算能力,属于中等题.19、(1)(1)【解析】试题分析:(1)由已知利用正弦定理,两角和的正弦公式、诱导公式化简可得,结合,可求,进而可求的值;(1)由已知及余弦定理,平方和公式可求的值,进而利用三角形面积公式即可计算得解.试题解析:(1)在△ABC中,∵acosC+ccosA=1bcosA,∴sinAcosC+sinCcosA=1sinBcosA,

∴sin(A+C)=sinB=1sinBcosA,∵sinB≠0,∴,可得:

(1)∵,,∴b1+c1=bc+4,可得:(b+c)1=3bc+4=10,可得:bc=1.∴.20、(1)-3;(2)-.【解析】

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论