2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题含解析_第1页
2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题含解析_第2页
2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题含解析_第3页
2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题含解析_第4页
2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南长沙市第一中学高一下数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知且为常数,圆,过圆内一点的直线与圆相交于两点,当弦最短时,直线的方程为,则的值为()A.2 B.3 C.4 D.52.直线的倾斜角的取值范围是()A. B. C. D.3.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.14.若,则()A. B. C. D.5.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④6.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.7.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定8.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.9.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.510.函数的部分图像如图所示,则的值为()A.1 B.4 C.6 D.7二、填空题:本大题共6小题,每小题5分,共30分。11.化简:________12.空间两点,间的距离为_____.13.在直三棱柱中,,,,则异面直线与所成角的余弦值是_____________.14.已知正方体的棱长为,点、分别为、的中点,则点到平面的距离为______.15.在中,,,,则的面积等于______.16.已知向量,满足,且在方向上的投影是,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知动点P与两个定点O(0,0),A(3,0)的距离的比值为2,点P的轨迹为曲线C.(1)求曲线C的轨迹方程(2)过点(﹣1,0)作直线与曲线C交于A,B两点,设点M坐标为(4,0),求△ABM面积的最大值.18.对于函数f1(x), f2(x), h(x),如果存在实数(1)下面给出两组函数,h(x)是否分别为f1第一组:f1第二组:;(2)设f1x=log2x,f2x19.2016年崇明区政府投资8千万元启动休闲体育新乡村旅游项目.规划从2017年起,在今后的若干年内,每年继续投资2千万元用于此项目.2016年该项目的净收入为5百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长.记2016年为第1年,为第1年至此后第年的累计利润(注:含第年,累计利润=累计净收入﹣累计投入,单位:千万元),且当为正值时,认为该项目赢利.(1)试求的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?21.已知函数.(I)比较,的大小.(II)求函数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x﹣y=0垂直,再由斜率的关系列式求解.【详解】圆C:化简为圆心坐标为,半径为.如图,由题意可得,当弦最短时,过圆心与点(1,2)的直线与直线垂直.则,即a=1.故选:B.【点睛】本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理.2、B【解析】

由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【点睛】本题考查直线的斜率与倾斜角的关系,属于基础题.3、B【解析】

通过等差中项的性质即可得到答案.【详解】由于,故,故选B.【点睛】本题主要考查等差数列的性质,难度较小.4、D【解析】

将指数形式化为对数形式可得,再利用换底公式即可.【详解】解:因为,所以,故选:D.【点睛】本题考查了指数与对数的互化,重点考查了换底公式,属基础题.5、C【解析】

根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.6、D【解析】

首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.7、A【解析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.8、A【解析】

关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.9、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图10、C【解析】

根据是零点以及的纵坐标值,求解出的坐标值,然后进行数量积计算.【详解】令,且是第一个零点,则;令,是轴右侧第一个周期内的点,所以,则;则,,则.选C.【点睛】本题考查正切型函数以及坐标形式下向量数量积的计算,难度较易.当已知,则有.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据三角函数的诱导公式,准确运算,即可求解.【详解】由题意,可得.故答案为:.【点睛】本题主要考查了三角函数的诱导公式的化简、求值问题,其中解答中熟记三角函数的诱导公式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.12、【解析】

根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。13、【解析】

先找出线面角,运用余弦定理进行求解【详解】连接交于点,取中点,连接,则,连接为异面直线与所成角在中,,,同理可得,,异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.14、【解析】

作出图形,取的中点,连接,证明平面,可知点平面的距离等于点到平面的距离,然后利用等体积法计算出点到平面的距离,即为所求.【详解】如下图所示,取的中点,连接,在正方体中,且,、分别为、的中点,且,所以,四边形为平行四边形,且,又,,平面,平面,平面,则点平面的距离等于点到平面的距离,的面积为,在正方体中,平面,且平面,,易知三棱锥的体积为.的面积为.设点到平面的距离为,则,.故答案为:.【点睛】本题考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.15、【解析】

先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.16、1【解析】

在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【详解】因为,所以,解得:,故填:.【点睛】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解析】

(1)设点,运用两点的距离公式,化简整理可得所求轨迹方程;(2)由题意可知,直线的斜率存在,设直线方程为,求得到直线的距离,以及弦长公式,和三角形的面积公式,运用换元法和二次函数的最值可得所求.【详解】(1)设点,,即,,即,曲线的方程为.(2)由题意可知,直线的斜率存在,设直线方程为,由(1)可知,点是圆的圆心,点到直线的距离为,由得,即,又,所以,令,所以,,则,所以,当,即,此时,符合题意,即时取等号,所以面积的最大值为.【点睛】本题主要考查了轨迹方程的求法,直线和圆的位置关系,以及弦长公式和点到直线的距离公式的运用,考查推理与运算能力,试题综合性强,属于中档题.18、(1)见解析;(2)(-∞,-5)【解析】

(1)①设asinx+bcos取a=12,  b=②设a(x2-x)+b(则a+b=1-a+b=-1b=1,该方程组无解.所以h(x)不是(2)因为f1所以h(x)=2f不等式3h2(x)+2等价于t<-3h2(x)-2令s=log2x,则s∈[1,知y取得最大值-5,所以t<-5.考点:①创新题型即新定义问题②不等式有解球参数范围问题19、(1);(2).【解析】试题分析:(1)由题意知,第一年至此后第年的累计投入为(千万元),第年至此后第年的累计净收入为,利用等比数列数列的求和公式可得;(2)由,利用指数函数的单调性即可得出.试题解析:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣2],∴当n≤3时,f(n+1)﹣f(n)<1,故当n≤2时,f(n)递减;当n≥2时,f(n+1)﹣f(n)>1,故当n≥2时,f(n)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=1,得=≈=5,∴x≈2.从而当x∈[1,2)时,f'(x)<1,f(x)递减;当x∈(2,+∞)时,f'(x)>1,f(x)递增.又f(1)=﹣<1,f(7)=≈5×﹣21=﹣<1,f(8)=﹣23≈25﹣23=2>1.∴该项目将从第8年开始并持续赢利.答:该项目将从2123年开始并持续赢利.20、(1)(2)是数列中的第项【解析】

(1)直接利用等差数列的公式计算得到通项公式.(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论