四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题含解析_第1页
四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题含解析_第2页
四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题含解析_第3页
四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题含解析_第4页
四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市合江天立学校高2025届高一数学第二学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.32.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.3.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.4.已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于()A.π B.πC.16π D.32π5.已知函数,函数的最小值等于()A. B. C.5 D.96.已知向量,,若对任意的,恒成立,则角的取值范围是()A. B.C. D.7.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.8.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定9.设公差不为零的等差数列an的前n项和为Sn.若a2+A.10 B.11 C.12 D.1310.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要二、填空题:本大题共6小题,每小题5分,共30分。11.圆台两底面半径分别为2cm和5cm,母线长为cm,则它的轴截面的面积是________cm2.12.已知空间中的三个顶点的坐标分别为,则BC边上的中线的长度为________.13.若、为单位向量,且,则向量、的夹角为_______.(用反三角函数值表示)14.函数的最小正周期是________15.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.16.不等式的解集为_____________________。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某电视台有一档益智答题类综艺节日,每期节目从现场编号为01~80的80名观众中随机抽取10人答题.答题选手要从“科技”和“文艺”两类题目中选一类作答,一共回答10个问题,答对1题得1分.(1)若采用随机数表法抽取答题选手,按照以下随机数表,从下方带点的数字2开始向右读,每次读取两位数,一行用完接下一行左端,求抽取的第6个观众的编号.162277943949544354821737932378873509643842634916484421753315724550688770474476721763350258392120676(2)若采用等距系统抽样法抽取答题选手,且抽取的最小编号为06,求抽取的最大编号.(3)某期节目的10名答题选手中6人选科技类题目,4人选文艺类题目.其中选择科技类的6人得分的平均数为7,方差为;选择文艺类的4人得分的平均数为8,方差为.求这期节目的10名答题选手得分的平均数和方差.18.设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.19.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.20.已知圆经过点,且圆心在直线:上.(1)求圆的方程;(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.21.在中,角所对的边分别为,且.(1)求边长;(2)若的面积为,求边长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.2、A【解析】

根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【点睛】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.3、B【解析】

通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.4、B【解析】

作轴截面,圆锥的轴截面是等腰三角形,外接球的截面是圆为球的大圆是的外接圆,由图可得球的半径与圆锥的关系.【详解】如图,作轴截面,圆锥的轴截面是等腰三角形,的外接圆是球的大圆,设该圆锥的外接球的半径为R,依题意得,R2=(3-R)2+()2,解得R=2,所以所求球的体积V=πR3=π×23=π,故选B.【点睛】本题考查球的体积,关键是确定圆锥的外接球与圆锥之间的关系,即球半径与圆锥的高和底面半径之间的联系,而这个联系在其轴截面中正好体现.5、C【解析】

先将化为,由基本不等式即可求出最小值.【详解】因为,当且仅当,即时,取等号.故选C【点睛】本题主要考查利用基本不等式求函数的最值问题,需要先将函数化为能用基本不等式的形式,即可利用基本不等式求解,属于基础题型.6、A【解析】

利用数量积运算可将不等式化简为,根据恒成立条件可得不等式组,利用三角函数知识分别求解两个不等式,取交集得到结果.【详解】当时,恒成立,则当时,即,,解得:,当时,即,,解得:,在时恒成立可得:本题正确选项:【点睛】本题考查三角函数中的恒成立问题的求解,关键是能够根据数量积将恒成立不等式转化为两个三角不等式的求解问题,利用辅助角公式将问题转化为根据正弦型函数的值域求解角的范围的问题.7、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.8、A【解析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.9、C【解析】

由等差数列的前n项和公式Sn=n(a1+an)【详解】∵S13=117,∴13a1+a132=117,∴a1【点睛】本题考查等差数列的性质求和前n项和公式及等差数列下标和的性质,属于基础题。10、B【解析】

利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、63【解析】

首先画出轴截面,然后结合圆台的性质和轴截面整理计算即可求得最终结果.【详解】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM==9(cm),所以S四边形ABCD==63(cm2).【点睛】本题主要考查圆台的空间结构特征及相关元素的计算等知识,意在考查学生的转化能力和计算求解能力.12、【解析】

先求出BC的中点,由此能求出BC边上的中线的长度.【详解】解:因为空间中的三个顶点的坐标分别为,所以BC的中点为,所以BC边上的中线的长度为:,故答案为:.【点睛】本题考查三角形中中线长的求法,考查中点坐标公式、两点间距离的求法等基础知识,考查运算求解能力,是基础题.13、.【解析】

设向量、的夹角为,利用平面向量数量积的运算律与定义计算出的值,利用反三角函数可求出的值.【详解】设向量、的夹角为,由平面向量数量积的运算律与定义得,,,因此,向量、的夹角为,故答案为.【点睛】本题考查利用平面向量的数量积计算平面向量所成的夹角,解题的关键就是利用平面向量数量积的定义和运算律,考查运算求解能力,属于中等题.14、【解析】

先利用二倍角余弦公式对函数解析式进行化简整理,进而利用三角函数最小正周期的公式求得函数的最小正周期.【详解】解:f(x)=1﹣2sin2x=cos2x∴函数最小正周期Tπ故答案为π.【点睛】本题主要考查了二倍角的化简和三角函数的周期性及其求法.考查了三角函数的基础的知识的应用.15、【解析】

利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.16、或【解析】

利用一元二次函数的图象或转化为一元一次不等式组解一元二次不等式.【详解】由,或,所以或,不等式的解集为或.【点睛】本题考查解一元二次不等式,考查计算能力,属于基本题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)42;(2)78;(3)平均数为7.4,方差为2.24【解析】

(1)根据随机数表依次读取数据即可,取01~80之间的数据;(2)根据系统抽样,确定组矩,计算可得;(3)根据平均数和方差得出数据的整体关系,整体代入求解10名选手的平均数和方差.【详解】(1)根据题意读取的编号依次是:20,96(超界),43,84(超界),26,34,91(超界),64,84(超界),42,17,所以抽取的第6个观众的编号为42;(2)若采用系统抽样,组矩为8,最小编号为06,则最大编号为6+9×8=78;(3)记选择科技类的6人成绩分别为:,选择文艺类的4人成绩分别为:,由题:,,,,所以这10名选手的平均数为方差为【点睛】此题考查统计相关知识,涉及随机数表读数,系统抽样和平均数与方差的计算,对计算公式的变形处理要求较高.18、(I);(II).【解析】

(I)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(II)由(I)可得,进而可利用等比数列求和公式进行求解.【详解】(I)设等差数列的公差为,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.19、(1)见解析(2)【解析】

(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.20、(1)(2)在直线上存在定点,使得恒成立,详见解析【解析】

(1)求出弦中垂线方程,由中垂线和直线相交得圆心坐标,再求出圆半径,从而得圆标准方程;(2)直线斜率存在时,设方程为,代入圆的方程,得的一元二次方程,同时设交点为由韦达定理得,假设定点存在,设其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论