福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题含解析_第1页
福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题含解析_第2页
福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题含解析_第3页
福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题含解析_第4页
福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省漳州市五中、龙海市五中等四校2025届数学高一下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是某几何体的三视图,则该几何体的外接球的表面积是()A. B. C. D.2.函数的值域为A.[1,] B.[1,2] C.[,2] D.[3.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.124.设点,,若直线与线段没有交点,则的取值范围是A. B. C. D.5.(卷号)2397643038875648(题号)2398229448728576(题文)已知直线、,平面、,给出下列命题:①若,,且,则;②若,,且,则;③若,,且,则;④若,,且,则.其中正确的命题是()A.①② B.③④ C.①④ D.②③6.记等差数列的前n项和为.若,则()A.7 B.8 C.9 D.107.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.28.已知直线l和平面,若直线l在空间中任意放置,则在平面内总有直线和A.垂直 B.平行 C.异面 D.相交9.圆上的一点到直线的最大距离为()A. B. C. D.10.阅读如图所示的程序框图,运行相应的程序,输出的值等于()A.-3 B.-10 C.0 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.圆的一条经过点的切线方程为______.12.两个实习生加工一个零件,产品为一等品的概率分别为和,则这两个零件中恰有一个一等品的概率为__________.13.如图,在边长为的菱形中,,为中点,则______.14.已知直线l在y轴上的截距为1,且垂直于直线,则的方程是____________.15.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________16.函数y=sin2x+2sin2x的最小正周期T为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的首项,为常数,且(1)判断数列是否为等比数列,请说明理由;(2)是数列的前项的和,若是递增数列,求的取值范围.18.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上.(1)求点C的坐标;(2)求△ABC的面积.19.已知直线:在轴上的截距为,在轴上的截距为.(1)求实数,的值;(2)求点到直线的距离.20.已知是的内角,分别是角的对边.若,(1)求角的大小;(2)若,的面积为,为的中点,求21.已知函数f(x)=3sin(2x+π3)-4cos(1)求函数g(x)的解析式;(2)求函数g(x)在[π

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由三视图还原几何体,可知该几何体是由边长为的正方体切割得到的四棱锥,可知所求外接球即为正方体的外接球,通过求解正方体外接球半径,代入球的表面积公式可得到结果.【详解】由三视图可知,几何体为如下图所示的四棱锥:由上图可知:四棱锥可由边长为的正方体切割得到该正方体的外接球即为四棱锥的外接球四棱锥的外接球半径外接球的表面积故选:【点睛】本题考查棱锥外接球表面积的求解问题,关键是能够通过三视图还原几何体,并将几何体放入正方体中,通过求解正方体的外接球表面积得到结果;需明确正方体外接球表面积为其体对角线长的一半.2、D【解析】

因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.3、C【解析】

由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。4、B【解析】直线恒过点且斜率为由图可知,且故选点睛:本题主要考查了两条直线的交点坐标,直线恒过点,直线与线段没有交点转化为过定点的直线与线段无公共点,作出图象,由图求解即可.5、C【解析】

逐一判断各命题的正误,可得出结论.【详解】对于命题①,若,,且,则,该命题正确;对于命题②,若,,且,则与平行或相交,该命题错误;对于命题③,若,,且,则与平行、垂直或斜交,该命题错误;对于命题④,若,,且,则,该命题正确.故选:C.【点睛】本题考查线面、面面位置关系有关命题真假的判断,在判断时,可充分利用线面、面面平行或垂直的判定与性质定理,也可以结合几何体模型进行判断,考查推理能力,属于中等题.6、D【解析】

由可得值,可得可得答案.【详解】解:由,可得,所以,从而,故选D.【点睛】本题主要考察等差数列的性质及等差数列前n项的和,由得出的值是解题的关键.7、A【解析】

由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.8、A【解析】

本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下再讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.【详解】当直线l与平面相交时,平面内的任意一条直线与直线l的关系只有两种:异面、相交,此时就不可能平行了,故B错.当直线l与平面平行时,平面内的任意一条直线与直线l的关系只有两种:异面、平行,此时就不可能相交了,故D错.当直线a在平面内时,平面内的任意一条直线与直线l的关系只有两种:平行、相交,此时就不可能异面了,故C错.不管直线l与平面的位置关系相交、平行,还是在平面内,都可以在平面内找到一条直线与直线垂直,因为直线在异面与相交时都包括垂直的情况,故A正确.故选:A.【点睛】本题主要考查了空间中直线与直线之间的位置关系,空间中直线与平面之间的位置关系,考查空间想象能力和思维能力.9、D【解析】

先求出圆心到直线距离,再加上圆的半径,就是圆上一点到直线的最大距离.【详解】圆心(2,1)到直线的距离是,所以圆上一点到直线的最大距离为,故选D.【点睛】本题主要考查圆上一点到直线距离最值的求法,以及点到直线的距离公式.10、A【解析】

第一次循环,;第二次循环,;第三次循环,,当时,不成立,循环结束,此时,故选A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意,设为,设过点圆的切线为,分析可得在圆上,求出直线的斜率,分析可得直线的斜率,由直线的点斜式方程计算可得答案.【详解】根据题意,设为,设过点圆的切线为,圆的方程为,则点在圆上,则,则直线的斜率,则直线的方程为,变形可得,故答案为.【点睛】本题考查圆的切线方程,注意分析点与圆的位置关系.12、【解析】

利用相互独立事件概率乘法公式直接求解.【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为和,这两个零件中恰有一个一等品的概率为:.故答案为:.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.13、【解析】

选取为基底,根据向量的加法减法运算,利用数量积公式计算即可.【详解】因为,,,又,.【点睛】本题主要考查了向量的加法减法运算,向量的数量积,属于中档题.14、;【解析】试题分析:设垂直于直线的直线为,因为直线在轴上的截距为,所以,所以直线的方程是.考点:两直线的垂直关系.15、8【解析】

先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.16、【解析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是公比为的等比数列,理由见解析;(2)【解析】

(1)由,当时,,即可得出结论.(2)由(1)可得:,可得,,可得,,即可得出.【详解】(1),则时,,时,为等比数列,公比为.(2)由(1)可得:,只需,()当为奇数时,恒成立,又单减,∴当为偶数时,恒成立,又单增,∴.【点睛】本题考查等比数列的定义通项公式与求和公式及其单调性,考查推理能力与计算能力,属于中档题.18、(1)(–5,–4)(2)【解析】

(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是.(2)因为,得.,所以直线的方程为,即,故点到直线的距离,所以的面积.【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.19、(1),.(2).【解析】分析:(1)在直线方程中,令可得在轴上的截距,令可得轴上的截距.(2)由(1)可得点的坐标,然后根据点到直线的距离公式可得结果.详解:(1)在方程中,令,得,所以;令,得,所以.(2)由(1)得点即为,所以点到直线的距离为.点睛:直线在坐标轴上的“截距”不是“距离”,截距是直线与坐标轴交点的坐标,故截距可为负值、零或为正值.求直线在轴(轴)上的截距时,只需令直线方程中的或等于零即可.20、(1)(2)【解析】

(1)由,可将,转化为,,代入原式,根据正弦定理可得,结合余弦定理,及,可得角C的大小。(2)因为,所以。所以为等腰三角形,根据面积为,可得,在,,,,结合余弦定理,即可求解。【详解】(1)由得由正弦定理,得,即所以又,则(2)因为,所以.所以为等腰三角形,且顶角.因为所以.在中,,,,所以解得.【点睛】本题考查同角三角函数的基本关系,正弦定理,余弦定理,求面积公式,综合性较强,考查学生分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论