TI-双向 IO用隔离芯片-低速_第1页
TI-双向 IO用隔离芯片-低速_第2页
TI-双向 IO用隔离芯片-低速_第3页
TI-双向 IO用隔离芯片-低速_第4页
TI-双向 IO用隔离芯片-低速_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Sample&

Tools&

Support&

SLLSEB6D–JULY2012–REVISEDDECEMBERISO154xLow-PowerBidirectionalI2C IsolatedBidirectional,I2CCompatible,Supportsupto1-MHz3-Vto5.5-VSupplyOpen-DrainOutputsWith3.5-mASide1and35-mASide2SinkCurrentCapability–40°Cto+125°COperating±50-kV/µsTransientImmunityHBMESDProtectionof4kVonAllPins;8kVonBusPinsSafety-Related4242-VPKIsolationperDINVVDEV0884-10(VDEV0884-10):2006-122500-VRMSIsolationfor1MinuteperULCSAComponentAcceptanceNotice5A,IEC60950-1andIEC61010-1EndEquipmentCQCBasicInsulationperGB4943.1-IsolatedI2CSMBusandPMBusOpen-DrainMotorControlBatteryI2CLevel

TheISO1540andISO1541devicesarelow-power,bidirectionalisolatorsthatarecompatiblewithI2Cinterfaces.ThesedeviceshavelogicinputandoutputbuffersthatareseparatedbyTexasInstrumentsCapacitiveIsolationtechnologyusingasilicondioxide(SiO2)barrier.Whenusedwithisolatedpowersupplies,thesedevicesblockhighvoltages,isolategrounds,andpreventnoisecurrentsfromenteringthelocalgroundandinterferingwithordamagingsensitivecircuitry.Thisisolationtechnologyprovidesforfunction,performance,size,andpowerconsumptionadvantageswhencomparedtooptocouplers.TheISO1540andISO1541devicesenableacompleteisolatedI2Cinterfacetobeimplementedwithinasmallformfactor.TheISO1540hastwoisolatedbidirectionalchannelsforclockanddatalineswhiletheISO1541hasabidirectionaldataandaunidirectionalclockchannel.TheISO1541isusefulinapplicationsthathaveasinglemasterwhiletheISO1540issuitableformulti-masterapplications.Forapplicationswhereclockstretchingbytheslaveispossible,theISO1540deviceshouldbeused.Isolatedbidirectionalcommunicationisaccomplishedwithinthesedevicesbyoffsettingthelow-leveloutputvoltageonside1toavaluegreaterthanthehigh-levelinputvoltageonside1,thuspreventinganinternallogiclatchthatotherwisewouldoccurwithstandarddigitalisolators.DevicePARTBODYSIZESOIC4.90mm×3.91Forallavailablepackages,seetheorderableaddendumattheendofthedatasheet.IsolationSimplifiedIsolationororAnIMPORTANTNOTICEattheendofthisdatasheetaddressesavailability,warranty,changes,useinsafety-criticalapplications,intellectualpropertymattersandotherimportantdisclaimers.PRODUCTIONDATA.SLLSEB6D–JULY2012–REVISEDDECEMBERSLLSEB6D–JULY2012–REVISEDDECEMBERSubmitSubmitDocumentationCopyright©2012–2016,TexasInstrumentsProductFolderLinks:ISO1540SubmitDocumentationSubmitDocumentationCopyright©2012–2016,TexasInstrumentsProductFolderLinks:ISO1540Tableof Revision PinConfigurationand AbsoluteMaximum ESD RecommendedOperating Thermal Power Insulation Safety-Related SafetyLimiting Electrical SupplyCurrent Timing Switching InsulationCharacteristics Typical ParameterMeasurement Detailed

FunctionalBlock Feature IsolatorFunctional DeviceFunctional Applicationand Application Typical PowerSupply Layout Layout DeviceandDocumentation Documentation Related ReceivingNotificationofDocumentationUpdatesCommunity ElectrostaticDischarge Mechanical,Packaging,andOrderable RevisionNOTE:PagenumbersforpreviousrevisionsmaydifferfrompagenumbersinthecurrentChangesfromRevisionC(June2015)toRevision DeletedtheDeviceComparisonTable;seetheFeaturesListtablefordevice ChangedthestatusofCQCcertificationfromplannedto ChangedtheRegulatoryInformationtabletoSafety-RelatedCertificationsandupdated Changedformattingofsupplycurrentparameterstocombinedeviceandsides.Movedparameterstoseparate AddedtheReceivingNotificationofDocumentationUpdates ChangesfromRevisionB(May2013)toRevision AddedPinConfigurationandFunctionssection,ESDRatingstable,FeatureDescriptionsection,DeviceFunctionalModes,ApplicationandImplementationsection,PowerSupplyRecommendationssection,Layoutsection,DeviceandDocumentationSupportsection,andMechanical,Packaging,andOrderableInformation VDEStandardchangedtoDINVVDEV0884-10(VDEV0884-10):2006- Changedminimumairgap(Clearance)parameter,L(I01),toexternalclearance,CLR,andminimumtracking(creepage)parameter,L(I02),toexternal ChangedvaluesandtestconditionsintheInsulationSpecifications ChangedthedescriptionsofVDEandCSA ChangesfromRevisionA(October2012)toRevision ChangeSafetyFeatureFrom:(VDE0884Part2)(Pending)To:(VDE0884Part2) Changed,VDEcolumnFrom:Filenumber:40016131(pending)To:Filenumber: ChangesfromOriginal(July2012)toRevision ChangedFrom:CSAComponentAcceptanceNotice5A(Pending)To:CSAComponentAcceptanceNotice5A ChangedFrom:IEC60950-1andIEC61010-1EndEquipmentStandards(Pending)To:IEC60950-1and61010-1EndEquipmentStandards ChangedSafety-RelatedCertifications,CSAcolumnFrom:Filenumber:220991(pending)To:Filenumber: PinConfigurationandISO1540DPackage8-PinSOICTop Side1Nottoscale

SidePinFunctions—Ground,sideGround,sideSerialclockinput/output,sideSerialclockinput/output,sideSerialdatainput/output,sideSerialdatainput/output,sideSupplyvoltage,sideSupplyvoltage,sideISO1541DPackage8-PinSOICTop Side1Nottoscale

SidePinFunctions—Ground,sideGround,sideSerialclockinput,sideSerialclockoutput,sideSerialdatainput/output,sideSerialdatainput/output,sideSupplyvoltage,sideSupplyvoltage,sideAbsoluteMaximumoveroperatingfree-airtemperaturerange(unlessotherwiseVCC1,SDA1,VCC1+SDA2,VCC2+OutputSDA1,SDA2,MaximumjunctionStorageStressesbeyondthoselistedunderAbsoluteMaximumRatingsmaycausepermanentdamagetothedevice.Thesearestressratingsonly,whichdonotimplyfunctionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderRecommendedOperatingConditions.Exposuretoabsolute-maximum-ratedconditionsforextendedperiodsmayaffectdevicereliability.Allvoltagevaluesherewithinarewithrespecttothelocalgroundpin(GND1orGND2)andarepeakvoltageMaximumvoltagemustnotexceed6ESD ElectrostaticHumanbodymodel(HBM),perANSI/ESDA/JEDECBusAllCharged-devicemodel(CDM),perJEDECspecificationJESD22-MachineModelJEDECJESD22-A115-A,allJEDECdocumentJEP155statesthat500-VHBMallowssafemanufacturingwithastandardESDcontrolJEDECdocumentJEP157statesthat250-VCDMallowssafemanufacturingwithastandardESDcontrolRecommendedOperatingVCC1,SupplyVSDA1,Inputandoutputsignalvoltages,sideVSDA2,Inputandoutputsignalvoltages,sideLow-levelinputvoltage,sideHigh-levelinputvoltage,side0.7×Low-levelinputvoltage,side0.3×High-levelinputvoltage,side0.7×Outputcurrent,sideOutputcurrent,sideCapacitiveload,sideCapacitiveload,sideOperatingAmbientJunctionThermal(1)Thisrepresentsthemaximumfrequencywiththemaximumbusload(C)andthemaximumcurrentsink(IO).Ifthesystemhaslessbuscapacitance,thenhigherfrequenciescanbeachieved.ThermalTHERMALD8Junction-to-ambientthermalJunction-to-case(top)thermalJunction-to-boardthermalJunction-to-case(bottom)thermal(1)Formoreinformationabouttraditionalandnewthermalmetrics,seetheSemiconductorandICPackageThermalMetricsapplicationreport(SPRA953).PowerTEST Maximumpowerdissipation(bothVCC1=VCC2=5.5V,TJ=150°C,C1=40pF,C2=400pF;Inputa1-MHz50%dutycycleclock Maximumpowerdissipation(side- Maximumpowerdissipation(side-InsulationTESTExternalShortestterminal-to-terminaldistancethroughExternalShortestterminal-to-terminaldistanceacrossthepackagesurfaceDistancethroughtheMinimuminternalgap(internalDINEN60112(VDE0303-11);IECMaterialOvervoltageRatedmainsvoltage≤150Ratedmainsvoltage≤300DINVVDEV0884-10(VDEV0884-10):2006-MaximumrepetitivepeakisolationACvoltageMaximumtransientisolationVTEST=t=60st=1s(100%ApparentMethoda:AfterI/Osafetytestsubgroup2/3,Vini=VIOTM,tini=60s;Vpd(m)=1.2×VIORM=680VPK,tm=10Methoda:Afterenvironmentaltestssubgroup1,Vini=VIOTM,tini=60s;Vpd(m)=1.6×VIORM=906VPK,tm=10sMethodb1:Atroutinetest(100%production)andpreconditioning(typetest)Vini=VIOTM,tini=1s;Vpd(m)=1.875×VIORM=1062VPK,tm=1sBarriercapacitance,inputtooutputVIO=0.4sin(2πft),f=1Isolationresistance,inputtooutputVIO=500V,TA=VIO=500V,100°C≤TA≤VIO=500VatTS=PollutionClimaticULWithstandisolationVTEST=VISO=2500VRMS,t=60s(qualification);VTEST=1.2×VISO=3000VRMS,t=1s(100%Creepageandclearancerequirementsshouldbeappliedaccordingtothespecificequipmentisolationstandardsofanapplication.Careshouldbetakentomaintainthecreepageandclearancedistanceofaboarddesigntoensurethatthemountingpadsoftheisolatorontheprinted-circuitboarddonotreducethisdistance.Creepageandclearanceonaprinted-circuitboardbecomeequalincertaincases.Techniquessuchasinsertinggroovesand/orribsonaprintedcircuitboardareusedtohelpincreasethesespecifications.Thiscouplerissuitableforbasicelectricalinsulationonlywithinthemaximumoperatingratings.Compliancewiththesafetyratingsshallbeensuredbymeansofsuitableprotectivecircuits.ApparentchargeiselectricaldischargecausedbyapartialdischargeAllpinsoneachsideofthebarriertiedtogethercreatingatwo-terminalSafety-RelatedCertifiedaccordingtoDINVVDEV0884-10(VDEV0884-10):2006-12andDINEN61010-1ApprovedunderCSAComponentAcceptanceNotice5A,CSA/IEC60950-1,andCSA/IEC61010-1RecognizedunderUL1577ComponentRecognitionCertifiedaccordingtoGB4943.1-BasicMaximumTransientOvervoltage,4242VPK;MaximumRepetitivePeakVoltage,566VPK2.8-kVRMSInsulationRating;400VRMSBasicInsulationworkingvoltageperCSA60950-1-07+A1+A2andIEC60950-12nd300VRMSBasic,150ReinforcedInsulationworkingvoltageperCSA61010-1-12andIEC61010-13rdEd.,Singleprotection,2500BasicInsulation,Altitude≤5000m,TropicalClimate,250VRMSmaximumworkingvoltageMastercontractnumber:Filenumber:Certificatenumber:SafetyLimitingSafetylimitingintendstominimizepotentialdamagetotheisolationbarrieruponfailureofinputoroutputcircuitry.AfailureoftheI/Ocanallowlowresistancetogroundorthesupplyand,withoutcurrentlimiting,dissipatesufficientpowertooverheatthedieanddamagetheisolationbarrier,potentiallyleadingtosecondarysystemfailures.TEST Safetyinput,output,orsupplyRθJA=114.6°C/W,VI=5.5V,TJ=150°C,TA=seeFigureRθJA=114.6°C/W,VI=3.6V,TJ=150°C,TA=seeFigure SafetyThesafety-limitingconstraintisthemaximumjunctiontemperaturespecifiedinthedatasheet.Thepowerdissipationandjunction-to-airthermalimpedanceofthedeviceinstalledintheapplicationhardwaredeterminesthejunctiontemperature.Theassumedjunction-to-airthermalresistanceintheThermalInformationtableisthatofadeviceinstalledonahigh-Ktestboardforleadedsurface-mountpackages.Thepoweristherecommendedmaximuminputvoltagetimesthecurrent.Thejunctiontemperatureisthentheambienttemperatureplusthepowertimesthejunction-to-airthermalresistance.Electricaloverrecommendedoperatingconditions,unlessotherwiseTESTSIDE1Voltageinputthresholdlow,SDA1andSCL1Voltageinputthresholdhigh,SDA1andSCL1VoltageinputVIHT1Low-leveloutputvoltage,SDA1andSCL1(1)0.5mA≤(ISDA1andISCL1)≤3.5Low-leveloutputvoltagetohigh-levelinputvoltagethresholddifference,SDA1andSCL1(1)(2)0.5mA≤(ISDA1andISCL1)≤3.5SIDE2 Voltageinputthresholdlow,SDA2andSCL20.3×0.4×Voltageinputthresholdhigh,SDA2andSCL20.4×0.5×VoltageinputVIHT2–0.05×Low-leveloutputvoltage,SDA2andSCL20.5mA≤(ISDA2andISCL2)≤35BOTH Inputleakagecurrents,SDA1,SCL1,SDA2,andSCL2VSDA1,VSCL1=VCC1;VSDA2,VSCL2= Inputcapacitancetolocalground,SDA1,SCL1,SDA2,andSCL2VI=0.4×sin(2E6πt)+2.5SeeFigureVCCundervoltagelockoutThisparameterdoesnotapplytotheISO1541SCL1lineasitis∆VOIT1=VOL1–VIHT1.ThisrepresentstheminimumdifferencebetweenaLow-LevelOutputVoltageandaHigh-LevelInputVoltageThresholdtopreventapermanentlatchconditionthatwouldotherwiseexistwithbidirectionalcommunication.AnyVCCvoltages,oneitherside,lessthantheminimumwillensuredevicelockout.BothVCCvoltagesgreaterthanthemaximumwillpreventdevicelockout.SupplyCurrentoverrecommendedoperatingconditions,unlessotherwisenoted.Formoreinformation,seeFigureTEST3V≤VCC1,VCC2≤3.6Supplycurrent,sideVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=OpenSupplycurrent,sideISO1540andVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=Open4.5V≤VCC1,VCC2≤5.5Supplycurrent,sideVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=OpenSupplycurrent,sideISO1540andVSDA1,VSCL1=GND1;VSDA2,VSCL2=GND2;R1,R2=Open;C1,C2=OpenVSDA1,VSCL1=VCC1;VSDA2,VSCL2=VCC2;R1,R2=Open;C1,C2=Open TimingInputnoiseTimetorecoverfrom2.7Vto0.9V;SeeFigureSwitchingoverrecommendedoperatingconditions,unlessotherwiseTEST3V≤VCC1,VCC2≤3.6OutputSignalFallTime(SDA1,SCL1)SeeFigure19R1=953Ω,C1=40pF0.7×VCC1to0.3×0.9×VCC1to900OutputSignalFallTime(SDA2,SCL2)SeeFigure19R2=95.3Ω,C2=400pF0.7×VCC2to0.3×0.9×VCC2to400SeeFigure19R1=953Ω,R2=95.3Ω,C1,C2=10pF0.55Vto0.7×Delay,Side1toSide0.7Vto0.4Delay,Side1toSidePulseWidth|tpHL1-2–tpLH1- 0.4×VCC2to0.7×Delay,Side2toSide 0.4×VCC2to0.9Delay,Side2toSidePWDPulseWidth|tpHL2-1–tpLH2-Round-trippropagationdelayonSide1SeeFigureR1=953Ω,C1=40pFR2=95.3Ω,C2=400pF0.4Vto0.3×4.5V≤VCC1,VCC2≤5.5 OutputSignalFallTime(SDA1,SCL1)SeeFigure19R1=1430Ω,C1=40pF0.7×VCC1to0.3×0.9×VCC1to900OutputSignalFallTime(SDA2,SCL2)SeeFigure19R2=143Ω,C2=400pF0.7×VCC2to0.3×0.9×VCC2to400SeeFigure19R1=1430Ω,R2=143Ω,C1,2=10pF0.55Vto0.7×Delay,Side1toSide0.7Vto0.4Delay,Side1toSidePulseWidth|tpHL1-2–tpLH1- 0.4×VCC2to0.7×delay,side2toside 0.4×VCC2to0.9delay,Side2tosidePWDPulseWidth|tpHL2-1–tpLH2-Round-trippropagationdelayonside1SeeFigureR1=1430Ω,C1=40pFR2=143Ω,C2=4000.4Vto0.3×(1)ThisparameterdoesnotapplytotheISO1541SCL1lineasitisInsulationCharacteristicsVCC1VCC1=VCC2=3.6VVCC1=VCC2=5.5SafetySafetyLimitingCurrent AmbientTemperatureFigure1.ThermalDeratingCurveforLimitingCurrentperTypicalOutputOutputVoltage,VOL1

I=3.5mAI=0.5

OutputOutputCurrent,IOL1-

0.1

−40−25−10 203550658095110Free−AirTemperature

TA=

AppliedVoltage,VSDA1,VSCL1Figure2.Side1:OutputLowVoltagevsFree-Air

Figure3.Side1:OutputLowCurrentvsSDA1orSCL1AppliedVoltage FallTime,tFallTime,tf1FallTime,tf1 R1=953 R1=2.2

R1=1430R1=2.2-40-25- 203550658095110 -40-25- 203550658095110

VCC1=3.3 C1=40Falltimemeasuredfrom70%to30%Figure4.Side1:OutputFallTimevsFree-Air

VCC1=5 C1=40Falltimemeasuredfrom70%to30%Figure5.Side1:OutputFallTimevsFree-air FallTimetFallTimetf2FallTimetf2 R2=95.3R2=2.2

R2=143R2=2.2-40-25- 203550658095110 -40-25- 203550658095110

VCC2=3.3 C2=400Falltimemeasuredfrom70%to30%Figure6.Side2:OutputFallTimevsFree-Air

VCC2=5 C2=400Falltimemeasuredfrom70%to30%Figure7.Side2:OutputFallTimevsFree-AirTypicalCharacteristicsPropagationPropagationDelay,tPLH1-2

PropagationPropagationDelay,tPHL1-2 VCC1andVCC2=3.3V,R2=95.3VCC1andVCC2=5V,R2=143

VCC1andVCC2=3.3V,R2=95.3VCC1andVCC2=5V,R2=143-40-25- 203550658095110 -40-25- 203550658095110C2=10

C2=10

Figure8.tPLH1-2PropagationDelayvsFree-AirVCC1andVCC2=3.3

Figure9.tPHL1-2PropagationDelayvsFree-Air

VCC1andVCC2=5 PropagationPropagationDelay,tPHL1-2

VCC1andVCC2=3.3VVCC1andVCC2=5V-40-25- 203550658095110 -40-25- 203550658095110R2=2.2 C2=400

R2=2.2 C2=400

Figure10.tPLH1-2PropagationDelayvsFree-AirPropagationPropagationDelay,tPHL2-1 VCC1andVCC2=3.3V,R1=953VCC1andVCC2=5V,R1=1430

Figure11.tPHL1-2PropagationDelayvsFree-AirPropagationPropagationDelay,tPHL2-1 VCC1andVCC2=3.3V,R1=953VCC1andVCC2=5V,R1=1430-40-25- 203550658095110 -40-25- 203550658095110C1=10

C1=10

Figure12.tPLH2-1PropagationDelayvsFree-Air

Figure13.tPHL2-1PropagationDelayvsFree-AirTypicalCharacteristics PropagationPropagationDelay,tPLH2-1

PropagationPropagationDelay,tPHL2-1VCC1andVCC2=3.3VCC1andVCC2=5

VCC1andVCC2=3.3VVCC1andVCC2=5V-40-25- 203550658095110 R1=2.2 C1=40Figure14.tPLH2-1PropagationDelayvsFree-Air

−40−25 95110Free-AirTemperatureR1=2.2 C1=40Figure15.tPHL2-1PropagationDelayvsFree-AirtLOOP1tLOOP1

tLOOP1tLOOP1 VCC1andVCC2=3.3V,R1=953Q,R2=95.3VCC1andVCC2=5V,R1=1430Q,R2=143

VCC1andVCC2=3.3VVCC1andVCC2=5V-40-25- 203550658095110 -40-25- 203550658095110Free-AirTemperatureC1=40 C2=400Figure16.tLOOP1vsFree-Air

C1=40 C2=400R1=2.2 R2=2.2Figure17.tLOOP1vsFree-Air

VCC1andVCC2=3.3VCC1andVCC2=5-40-25- 203550658095110

Figure18.CMTIvsFree-AirParameterMeasurement

Copyright©2016,TexasInstrumentsFigure19.TestSDA1or

SCL1SCL1(ISO15400.30.4Copyright©2016,TexasInstrumentsFigure20.tLoop1SetupandTiming 22Figure21.Common-ModeTransientImmunityTestParameterMeasurementInformationSDAxorSDAxorSidex,Side1,3.3V,3.395.32,3.3V,3.3953I0ISDAxSDAx0Figure22.tUVLOTestCircuitandTimingDetailedTheI2Cbusisusedinawiderangeofapplicationsbecauseitissimpletouse.Thebusconsistsofatwo-wirecommunicationbusthatsupportsbidirectionaldatatransferbetweenamasterdeviceandseveralslavedevices.Themaster,orprocessor,controlsthebus,specificallytheserialclock(SCL)line.Dataistransferredbetweenthemasterandslavethroughaserialdata(SDA)line.Thisdatacanbetransferredinfourspeeds:standardmode(0to100kbps),fastmode(0to400kbps),fast-modeplus(0to1Mbps),andhigh-speedmode(0to3.4Mbps).Themostcommonspeedsarethestandardandfastmodes.TheI2Cbusoperatesinbidirectional,half-duplexmode,whilestandarddigitalisolatorsareunidirectionaldevices.Tomakeefficientuseofonetechnologysupportingtheother,externalcircuitryisrequiredthatseparatesthebidirectionalbusintotwounidirectionalsignalpathswithoutintroducingsignificantpropagationdelay.ThesedeviceshavetheirlogicinputandoutputbuffersseparatedbyTI'scapacitiveisolationtechnologyusingasilicondioxide(SiO2)barrier.Whenusedinconjunctionwithisolatedpowersupplies,thesedevicesblockhighvoltages,isolategrounds,andpreventnoisecurrentsfromenteringthelocalgroundandinterferingwithordamagingsensitivecircuitry.IsolationFigure23.ISO1540BlockFunctionalBlockDiagramsIsolationFeatureThedeviceenablesacompleteisolatedI2CinterfacetobeimplementedwithinasmallformfactorhavingthefeatureslistedinTable1.Table1.FeaturesPARTCHANNELRATEDMAXIMUMBidirectional(SCL)Bidirectional250042421Unidirectional(SCL)(1)SeeSafety-RelatedCertificationsfordetailedIsolationIsolatorFunctionalToisolateabidirectionalsignalpath(SDAorSCL),theISO1540internallysplitsabidirectionallineintotwounidirectionalsignallines,eachofwhichisisolatedthroughasingle-channeldigitalisolator.Eachchanneloutputismadeopen-draintocomplywiththeopen-draintechnologyofI2C.Side1oftheISO1540connectstoalow-capacitanceI2Cnode,whileside2isdesignedforconnectingtoafullyloadedI2Cbuswithupto400pFof40504050

Copyright©2016,TexasInstrumentsFigure25.SDAChannelDesignandVoltageLevelsatIsolatorFunctionalPrincipleAtfirstsight,thearrangementoftheinternalbufferssuggestsaclosedsignalloopthatispronetolatch-up.However,thisloopisbrokenbyimplementinganoutputbuffer(B)whoseoutputlow-levelisraisedbyadiodedroptoapproximately0.75V,andtheinputbuffer(C)thatconsistsofacomparatorwithdefinedhysteresis.Thecomparator’supperandlowerinputthresholdsthendistinguishbetweentheproperlow-potentialof0.4V(maximum)drivendirectlybySDA1andthebufferedoutputlow-levelofB.Figure26demonstratetheswitchingbehavioroftheI2Cisolator,ISO1540,betweenamasternodeatSDA1andaheavyloadedbusatSDA2.

Figure26.SDAChannelTiminginReceiveandTransmitReceiveDirection(LeftDiagramofFigureWhentheI2CbusdrivesSDA2low,SDA1followsafteracertaindelayinthereceivepath.TheoutputlowisthebufferedoutputofVOL1=0.75V,whichissufficientlylowtobedetectedbySchmitt-triggerinputswithaminimuminput-lowvoltageofVIL=0.9Vat3Vsupplylevels.WhenSDA2isreleased,itsvoltagepotentialincreasestowardsVCC2followingthetime-constantformedbyRPU2andCbus.Afterthereceivedelay,SDA1isreleasedandalsorisestowardsVCC1,followingthetime-constantRPU1×Cnode.Becauseofthesignificantlowertime-constant,SDA1mayreachVCC1beforeSDA2reachesVCC2potential.TransmitDirection(RightDiagramofFigureWhenamasterdrivesSDA1low,SDA2followsafteracertaindelayinthetransmitdirection.WhenSDA2turnslowitalsocausestheoutputofbufferBtoturnlowbutatahigher0.75Vlevel.Thislevelcannotbeobservedimmediatelyasitisoverwrittenbythelowerlow-levelofthemaster.However,whenthemasterreleasesSDA1,thevoltagepotentialincreasesandfirstmustpasstheupperinputthresholdofthecomparator,VIHT1,toreleaseSDA2.SDA1thenincreasesfurtheruntilitreachesthebufferedoutputlevelofVOL1=0.75V,maintainedbythereceivepath.WhencomparatorCturnshigh,SDA2isreleasedafterthedelayintransmitdirection.IttakesanotherreceivedelayuntilB’soutputturnshighandfullyreleasesSDA1tomovetowardVCC1potential.DeviceFunctionalTable2liststheISO154xfunctionalTable2.FunctionPOWERVCC1orVCC2<2.1VCC1andVCC2>2.8VCC1andVCC2>2.8VCC1andVCC2>2.8H=HighLevel;L=LowLevel;Z=HighImpedanceorFloat;X=Irrelevant;?=InvalidinputconditionasanI2CsystemrequiresthatapullupresistortoVCCisApplicationandInformationinthefollowingapplicationssectionsisnotpartoftheTIcomponentspecification,andTIdoesnotwarrantitsaccuracyorcompleteness.TI’scustomersareresponsiblefordeterminingsuitabilityofcomponentsfortheirpurposes.Customersshouldvalidateandtesttheirdesignimplementationtoconfirmsystemfunctionality.ApplicationI2CBusTheinter-integratedcircuit(I2C)busisasingle-ended,multi-master,2-wirebusforefficientinter-ICcommunicationinhalf-duplexmode.I2Cusesopen-draintechnology,requiringtwolines,serialdata(SDA)andserialclock(SCL),tobeconnectedtoVDDbyresistors(seeFigure27).Pullingthelinetogroundisconsideredalogiczerowhilelettingthelinefloatisalogicone.Thislogicisusedasachannelaccessmethod.TransitionsoflogicstatesmustoccurwhiletheSCLpinislow.TransitionswhiletheSCLpinishighindicateSTARTandSTOPconditions.Typicalsupplyvoltagesare3.3Vand5V,althoughsystemswithhigherorlowervoltagesareallowed. C

Figure27.I2C

CI2Ccommunicationusesa7-bitaddressspacewith16reservedaddresses,soatheoreticalmaximumof112nodescancommunicateonthesamebus.Inpraxis,however,thenumberofnodesislimitedbythespecified,totalbuscapacitanceof400pF,whichrestrictscommunicationdistancestoafewmeters.ThespecifiedsignalingratesfortheISO1540andISO1541devicesare100kbps(standardmode),400kbps(fastmode),1Mbps(fastmodeplus).Thebushastworolesfornodes:masterandslave.Amasternodeissuestheclockandslaveaddresses,andalsoinitiatesandendsdatatransactions.Aslavenodereceivestheclockandaddressesandrespondstorequestsfromthemaster.Figure28showsatypicaldatatransferbetweenmasterandslave.ACK/1-1-1-

Figure28.TimingDiagramofaCompleteData

ThemasterinitiatesatransactionbycreatingaSTARTcondition,followingbythe7-bitaddressoftheslaveitwishestocommunicatewith.Thisisfollowedbyasinglereadandwrite(R/W)bit,representingwhetherthemasterwishestowriteto0,ortoreadfrom1theslave.ThemasterthenreleasestheSDAlinetoallowtheslavetoacknowledgethereceiptofdata.Theslaverespondswithanacknowledgebit(ACK)bypullingtheSDApinlowduringtheentirehightimeofthe9thclockpulseontheSCLsignal,afterwhichthemastercontinuesineithertransmitorreceivemode(accordingtotheR/Wbitsent),whiletheslavecontinuesinthecomplementarymode(receiveortransmit,respectively).Theaddressandthe8-bitdatabytesaresentmostsignificantbit(MSB)first.TheSTARTbitisindicatedbyahigh-to-lowtransitionofSDAwhileSCLishigh.TheSTOPconditioniscreatedbyalow-to-hightransitionofSDAwhileSCLishigh.Ifthemasterwritestoaslave,itrepeatedlysendsabytewiththeslavesendinganACKbit.Inthiscase,themasterisinmaster-transmitmodeandtheslaveisinslave-receivemode.Ifthemasterreadsfromaslave,itrepeatedlyreceivesabytefromtheslave,whileacknowledging(ACK)thereceiptofeverybytebutthelastone(seeFigure29).Inthissituation,themasterisinmaster-receivemodeandtheslaveisinslave-transmitmode.ThemasterendsthetransmissionwithaSTOPbit,ormaysendanotherSTARTbittomaintainbuscontrolforfurthertransfers.FromMastertoSlaveFromSlaveto

MasterTransmitterwritingtoSlaveMasterReceiverreadingfromSlave

A=A=notacknowledgeS=StartSlaveSlaveSlaveFigure29.TransmitorReceiveModeChangesDuringaDataWhenwritingtoaslave,amastermainly

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论