武汉新洲区六校联考2024年中考数学押题卷含解析_第1页
武汉新洲区六校联考2024年中考数学押题卷含解析_第2页
武汉新洲区六校联考2024年中考数学押题卷含解析_第3页
武汉新洲区六校联考2024年中考数学押题卷含解析_第4页
武汉新洲区六校联考2024年中考数学押题卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武汉新洲区六校联考2024年中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是()A. B.C. D.2.下列图形中为正方体的平面展开图的是()A. B.C. D.3.已知,则的值是A.60 B.64 C.66 D.724.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()A. B.2 C. D.35.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<16.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2) B.(2)(3) C.(2)(4) D.(3)(4)7.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为πcm2,则扇形圆心角的度数为()A.120° B.140° C.150° D.160°8.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是()A.圆锥 B.圆柱 C.球 D.正方体9.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A.6 B.8 C.10 D.1210.如图所示,a∥b,直线a与直线b之间的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段CD的长度二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+ B.4+ C.4 D.-1+12.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,则x的取值范围是_____.13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.14.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.15.已知点P是线段AB的黄金分割点,PA>PB,AB=4cm,则PA=____cm.16.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.三、解答题(共8题,共72分)17.(8分)一次函数y=34x的图象如图所示,它与二次函数y=ax2(1)求点C的坐标;(2)设二次函数图象的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.18.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.19.(8分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)20.(8分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°(1)如图2,当△ABO是等边三角形时,求证:OE=AB;(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,①试探究α、β之间存在的数量关系?②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.21.(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.22.(10分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.(1)求证:△CDF≌△ADE;(2)若AF=1,求四边形ABCO的周长.23.(12分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.2、C【解析】

利用正方体及其表面展开图的特点依次判断解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.3、A【解析】

将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.4、A【解析】

设AC=a,由特殊角的三角函数值分别表示出BC、AB的长度,进而得出BD、CD的长度,由公式求出tan∠DAC的值即可.【详解】设AC=a,则BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故选A.【点睛】本题主要考查特殊角的三角函数值.5、C【解析】试题分析:当x>1时,x+b>kx+4,即不等式x+b>kx+4的解集为x>1.故选C.考点:一次函数与一元一次不等式.6、B【解析】

根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.7、C【解析】

根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为πcm2,∴,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=.8、C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A.圆锥的主视图可以是三角形也可能是圆,故不符合题意;B.圆柱的主视图可能是长方形也可能是圆,故不符合题意;C.球的主视图只能是圆,故符合题意;D.正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.9、C【解析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10、A【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:∵a∥b,AP⊥BC∴两平行直线a、b之间的距离是AP的长度∴根据平行线间的距离相等∴直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.二、填空题(本大题共6个小题,每小题3分,共18分)11、A【解析】

根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.【详解】如图,∵点A坐标为(-2,2),∴k=-2×2=-4,∴反比例函数解析式为y=-,∵OB=AB=2,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(-,t),∵PB=PB′,∴t-2=|-|=,整理得t2-2t-4=0,解得t1=,t2=1-(不符合题意,舍去),∴t的值为.故选A.【点睛】本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.12、11≤x<1【解析】

根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.13、1【解析】

估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.14、m>-1【解析】

首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:,①+②得1x+1y=1m+4,则x+y=m+1,根据题意得m+1>0,解得m>﹣1.故答案是:m>﹣1.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.15、2-2【解析】

根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为:(2-2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的,难度一般.16、60°【解析】

先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2)×180°是解答本题的关键.三、解答题(共8题,共72分)17、(1)点C(1,32);(1)①y=38x1-32x;②y=-12x【解析】试题分析:(1)求得二次函数y=ax1-4ax+c对称轴为直线x=1,把x=1代入y=34x求得y=32,即可得点C的坐标;(1)①根据点D与点C关于x轴对称即可得点D的坐标,并且求得CD的长,设A(m,34m),根据S△ACD=3即可求得m的值,即求得点A的坐标,把A.D的坐标代入y=ax1-4ax+c得方程组,解得a、c的值即可得二次函数的表达式.②设A(m,34m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=根据勾股定理用m表示出AC的长,根据△ACD的面积等于10可求得m的值,即可得A点的坐标,分两种情况:第一种情况,若a>0,则点D在点C下方,求点D的坐标;第二种情况,若a<0,则点D在点C上方,求点D的坐标,分别把A、D的坐标代入y=ax1-4ax+c即可求得函数表达式.试题解析:(1)y=ax1-4ax+c=a(x-1)1-4a+c.∴二次函数图像的对称轴为直线x=1.当x=1时,y=34x=32,∴C(1,(1)①∵点D与点C关于x轴对称,∴D(1,-32设A(m,34m)(m<1),由S△ACD=3,得1由A(0,0)、D(1,-32)得解得a=38∴y=38x1-3②设A(m,34m)(m<1),过点A作AE⊥CD于E,则AE=1-m,CE=32-AC==54(1-m),∵CD=AC,∴CD=54由S△ACD=10得12×54(1-m)∴A(-1,-32若a>0,则点D在点C下方,∴D(1,-72由A(-1,-32)、D(1,-72)得解得∴y=18x1-1若a<0,则点D在点C上方,∴D(1,132由A(-1,-32)、D(1,132)得解得∴y=-12x1+1x+9考点:二次函数与一次函数的综合题.18、见解析【解析】试题分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.

证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.19、5.5米【解析】

过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.【详解】解:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x.在Rt△BCD中,∠CBD=45°,则BD=CD=x.由题意得,x﹣x=4,解得:.答:生命所在点C的深度为5.5米.20、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.【解析】

(1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;(2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;(3)①根据等腰三角形的性质、三角形内角和定理计算;②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.【详解】(1)作OH⊥AB于H,∵AD、BC的垂直平分线相交于点O,∴OD=OA,OB=OC,∵△ABO是等边三角形,∴OD=OC,∠AOB=60°,∵∠AOB+∠COD=180°∴∠COD=120°,∵OE是边CD的中线,∴OE⊥CD,∴∠OCE=30°,∵OA=OB,OH⊥AB,∴∠BOH=30°,BH=AB,在△OCE和△BOH中,,∴△OCE≌△OBH,∴OE=BH,∴OE=AB;(2)∵∠AOB=90°,∠AOB+∠COD=180°,∴∠COD=90°,在△OCD和△OBA中,,∴△OCD≌△OBA,∴AB=CD,∵∠COD=90°,OE是边CD的中线,∴OE=CD,∴OE=AB;(3)①∵∠OAD=α,OA=OD,∴∠AOD=180°﹣2α,同理,∠BOC=180°﹣2β,∵∠AOB+∠COD=180°,∴∠AOD+∠COB=180°,∴180°﹣2α+180°﹣2β=180°,整理得,α+β=90°;②延长OE至F,使EF=OE,连接FD、FC,则四边形FDOC是平行四边形,∴∠OCF+∠COD=180°,,∴∠AOB=∠FCO,在△FCO和△AOB中,,∴△FCO≌△AOB,∴FO=AB,∴OE=FO=AB.【点睛】本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21、(1)见解析;(2)【解析】

(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP=BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC-BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,连接QD′则DQ=D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.22、(1)详见解析;(2)【解析】

(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;(2)连接AC,利用正方形的性质和四边形周长解答即可.【详解】(1)证明:∵四边形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,FD=DE,∴△CDF≌△ADE(SAS);(2)如图,连接AC.∵四边形ABCD是正方形,∴∠ACD=∠DAC=45°,∵△CDF≌△ADE,∴∠DCF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论