版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题11二次函数与单线段最值问题
【例1】(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.【例2】(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.【例3】(2021•青海)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A,B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q点.当PQ=时,求P点的坐标.【例4】(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).(1)求此二次函数的表达式及图象顶点D的坐标;(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.1.(2020•河北模拟)已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.2.(2018秋•宁城县期末)已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.3.(2021•桥西区模拟)如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO=BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.4.(2022•和平区二模)如图,在平面直角坐标系中,已知抛物线顶点A的坐标为(﹣2,4),且经过坐标原点,与x轴负半轴交于点B.(1)求抛物线的函数表达式并直接写出点B的坐标;(2)过点A作AC⊥x轴于点C,若点D是y轴左侧的抛物线上一个动点(点D与点A不重合),过点D作DE⊥x轴于点E,连接AO,DO,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,求点D的坐标;(3)在(2)的条件下,当点D在第二象限时,在平面内存在一条直线,这条直线与抛物线在第二象限交于点F,在第三象限交于点G,且点A,点B,点D,到直线FG的距离都相等,请直接写出线段FG的长.5.(2022•鹿城区校级二模)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.6.(2021•南岗区模拟)如图,抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过点P作x轴的平行线,与抛物线的另一个交点为点G,连接CG交x轴于点N,设点P的横坐标为t,ON的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PB,将线段PB绕着点P顺时针旋转90°得到线段PD,点D恰好落在y轴上,点E在线段OB上,连接PE,点Q在EB的延长线上,且EQ=PE,连接DQ交PE于点F,若PE=3PF,求QN的长.7.(2021•凉山州模拟)如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.8.(2022•无锡二模)已知抛物线y=mx2﹣2mx+3(m<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求抛物线的函数表达式;(2)若M、N是第一象限的抛物线上不同的两点,且△BCN的面积总小于△BCM的面积,求点M的坐标;(3)若D为抛物线的顶点,P为第二象限的抛物线上的一点,连接BP、DP,分别交y轴于点E、F,若EF=OC,求点P的坐标.9.(2021•乳源县三模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C(0,).(1)求抛物线的解析式;(2)若点M是抛物线的顶点,连接AM,CM,求△AMC的面积;(3)若点P是抛物线上的一个动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.10.(2021•河池)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+4与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)求直线CA的解析式;(2)如图,直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,DG⊥CA于点G,若E为GA的中点,求m的值.(3)直线y=nx+n与抛物线交于M(x1,y1),N(x2,y2)两点,其中x1<x2.若x2﹣x1>3且y2﹣y1>0,结合函数图象,探究n的取值范围.11.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.12.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.13.(2020•武汉模拟)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1)则点A的坐标为,点B的坐标为.(2)如图1,过点A的直线y=ax+a交y轴正半轴于点F,交抛物线于点D,过点B作BE∥y轴交AD于E,求证:AF=DE.(3)如图2,直线DE:y=kx+b与抛物线只有一个交点D,与对称轴交于点E,对称轴上存在点F,满足DF=FE.若a=1,求点F坐标.14.(2020•哈尔滨模拟)如图,抛物线y=ax2+bx+5经过坐标轴上A、B和C三点,连接AC,tanC=,5OA=3OB.(1)求抛物线的解析式;(2)点Q在第四象限的抛物线上且横坐标为t,连接BQ交y轴于点E,连接CQ、CB,△BCQ的面积为S,求S与t的函数解析式;(3)已知点D是抛物线的顶点,连接CQ,DH所在直线是抛物线的对称轴,连接QH,若∠BQC=45°,HR∥x轴交抛物线于点R,HQ=HR,求点R的坐标.15.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.16.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?17.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.18.(2020•滨州)如图,抛物线的顶点为A(h,﹣1),与y轴交于点B(0,﹣),点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,﹣3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时△DFQ周长的最小值及点Q的坐标.19.(2016•巴彦淖尔)如图所示,抛物线y=ax2﹣x+c经过原点O与点A(6,0)两点,过点A作AC⊥x轴,交直线y=2x﹣2于点C,且直线y=2x﹣2与x轴交于点D.(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x﹣2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值.20.(2018•葫芦岛)如图,抛物线y=ax2+4x+c(a≠0)经过点A(﹣1,0),点E(4,5),与y轴交于点B,连接AB.(1)求该抛物线的解析式;(2)将△ABO绕点O旋转,点B的对应点为点F.①当点F落在直线AE上时,求点F的坐标和△ABF的面积;②当点F到直线AE的距离为时,过点F作直线AE的平行线与抛物线相交,请直接写出交点的坐标.
【例1】(2022•襄阳)在平面直角坐标系中,直线y=mx﹣2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=﹣x2+2mx﹣m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.【分析】(1)根据函数上点的坐标特点可分别得出A,B,C,D的坐标;①当m=2时,代入上述坐标即可得出结论;②过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,所以P(t,﹣t2+4t﹣2),E(t,2t﹣4).根据三角形的面积公式可得△PAB的面积,再利用二次函数的性质可得出结论;(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①y轴上有一点M(0,m),点C在线段MB上,需要分两种情况:当点M的坐标大于点B的坐标时;当点M的坐标小于点B的坐标时,分别得出m的取值范围即可;②根据①中的条件可知,分两种情况,分别得出BC的长度,利用二次函数的性质可得出结论.【解答】解:(1)∵直线y=mx﹣2m与x轴,y轴分别交于A,B两点,∴A(2,0),B(0,﹣2m);∵y=﹣(x﹣m)2+2,∴抛物线的顶点为D(m,2),令x=0,则y=﹣m2+2,∴C(0,﹣m2+2).①当m=2时,﹣2m=﹣4,﹣m2+2=﹣2,∴B(0,﹣4),C(0,﹣2),D(2,2).②由上可知,直线AB的解析式为:y=2x﹣4,抛物线的解析式为:y=﹣x2+4x﹣2.如图,过点P作PE∥y轴交直线AB于点E,设点P的横坐标为t,∴P(t,﹣t2+4t﹣2),E(t,2t﹣4).∴PE=﹣t2+4t﹣2﹣(2t﹣4)=﹣t2+2t+2,∴△PAB的面积为:×(2﹣0)×(﹣t2+2t+2)=﹣(t﹣1)2+3,∵﹣1<0,∴当t=1时,△PAB的面积的最大值为3.此时P(1,1).(2)由(1)可知,B(0,﹣2m),C(0,﹣m2+2),①∵y轴上有一点M(0,m),点C在线段MB上,∴需要分两种情况:当m≥﹣m2+2≥﹣2m时,可得≤m≤1+,当m≤﹣m2+2≤﹣2m时,可得﹣3≤m≤1﹣,∴m的取值范围为:≤m≤1+或﹣3≤m≤1﹣.②当≤m≤1+时,∵BC=﹣m2+2﹣(﹣2m)=﹣m2+2m+2=﹣(m﹣1)2+3,∴当m=1时,BC的最大值为3;当m≤﹣m2+2≤﹣2m时,即﹣3≤m≤1﹣,∴BC=﹣2m﹣(﹣m2+2)=m2﹣2m﹣2=(m﹣1)2﹣3,当m=﹣3时,点M与点C重合,BC的最大值为13.∴当m=1时,BC的最大值为3;当m=﹣3时,BC的最大值为13.【例2】(2022•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是边长为3的正方形,其中顶点A,C分别在x轴的正半轴和y轴的正半轴上.抛物线y=﹣x2+bx+c经过A,C两点,与x轴交于另一个点D.(1)①求点A,B,C的坐标;②求b,c的值.(2)若点P是边BC上的一个动点,连结AP,过点P作PM⊥AP,交y轴于点M(如图2所示).当点P在BC上运动时,点M也随之运动.设BP=m,CM=n,试用含m的代数式表示n,并求出n的最大值.【分析】(1)①根据正方形的性质得出点A,B,C的坐标;②利用待定系数法求函数解析式解答;(2)根据两角相等证明△MCP∽△PBA,列比例式可得n与m的关系式,配方后可得结论.【解答】解:(1)①四边形OABC是边长为3的正方形,∴A(3,0),B(3,3),C(0,3);②把A(3,0),C(0,3)代入抛物线y=﹣x2+bx+c中得:,解得:;(2)∵AP⊥PM,∴∠APM=90°,∴∠APB+∠CPM=90°,∵∠B=∠APB+∠BAP=90°,∴∠BAP=∠CPM,∵∠B=∠PCM=90°,∴△MCP∽△PBA,∴=,即=,∴3n=m(3﹣m),∴n=﹣m2+m=﹣(m﹣)2+(0≤m≤3),∵﹣<0,∴当m=时,n的值最大,最大值是.【例3】(2021•青海)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A,B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A,B,C.(1)求抛物线的解析式;(2)根据图象写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上的一动点,过点P作直线AB的垂线段,垂足为Q点.当PQ=时,求P点的坐标.【分析】(1)根据题意得出A、B点的坐标,然后利用待定系数法求出二次函数的解析式;(2)根据(1)的解析式由图象判断即可;(3)作PE⊥x轴于点E,交AB于点D,根据函数图象点P的位置分三种情况分别计算出P点的坐标即可.【解答】解:(1)当x=0,y=0+2=2,当y=0时,x+2=0,解得x=﹣2,∴A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2)代入抛物线解析式,得,解得,∴该抛物线的解析式为:y=﹣x2﹣x+2;(2)方法一:ax2+(b﹣1)x+c>2,即﹣x2﹣2x+2>2,当函数y=﹣x2﹣2x+2=2时,解得x=0或x=﹣2,由图象知,当﹣2<x<0时函数值大于2,∴不等式ax2+(b﹣1)x+c>2的解集为:﹣2<x<0;方法二:ax2+(b﹣1)x+c>2,即﹣x2﹣x+2>x+2,观察函数图象可知当﹣2<x<0时y=﹣x2﹣x+2的函数值大于y=x+2的函数值,∴不等式ax2+(b﹣1)x+c>2的解集为:﹣2<x<0;(3)作PE⊥x轴于点E,交AB于点D,作PQ⊥AB于Q,①如图1,当P在AB上方时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=,∴PD==1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,∴此时P点的坐标为(﹣1,2),②如图2,当P点在A点左侧时,同理①可得PD=1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=(x+2)﹣(﹣x2﹣x+2)=x2+2x,即x2+2x=1,解得x=±﹣1,由图象知此时P点在第三象限,∴x=﹣﹣1,∴此时P点的坐标为(﹣﹣1,﹣),③如图3,当P点在B点右侧时,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠DPQ=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,∴PQ=DQ=,∴PD==1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=(x+2)﹣(﹣x2﹣x+2)=x2+2x,即x2+2x=1,解得x=±﹣1,由图象知此时P点在第一象限,∴x=﹣1,∴此时P点的坐标为(﹣1,),综上,P点的坐标为(﹣1,2)或(﹣﹣1,﹣)或(﹣1,).【例4】(2022•雅安)已知二次函数y=ax2+bx+c的图象过点A(﹣1,0),B(3,0),且与y轴交于点C(0,﹣3).(1)求此二次函数的表达式及图象顶点D的坐标;(2)在此抛物线的对称轴上是否存在点E,使△ACE为Rt△,若存在,试求点E的坐标,若不存在,请说明理由;(3)在平面直角坐标系中,存在点P,满足PA⊥PD,求线段PB的最小值.【分析】(1)设二次函数的表达式为交点式,将点C坐标代入,进而求得结果;(2)先把AC,CE,AE的平方求出或表示出来,然后分为∠CAE=90°,∠ACE=90°及∠AEC=90°,然后根据勾股定理逆定理列出方程,解方程,进而求得结果;(3)根据∠APD=90°确定点P在以AD的中点为圆心,为半径的圆上,进一步求得结果.【解答】解:(1)由题意设二次函数表达式为:y=a(x+1)•(x﹣3),∴a•(﹣3)=﹣3,∴a=1,∴y=(x+1)•(x﹣3)=x2﹣2x﹣3=(x﹣1)2﹣4,∴D(1,﹣4);(2)存在点E,使△ACE是直角三角形,过程如下:设点E(1,m),∵A(﹣1,0),C(0,﹣3),∴AC2=10,AE2=4+m2,CE2=1+(m+3)2,当∠EAC=90°时,AE2+AC2=CE2,∴14+m2=1+(m+3)2,∴m=,∴E1(1,),当∠ACE=90°时,AC2+CE2=AE2,∴11+(m+3)2=4+m2,∴m=﹣,∴E2(1,﹣),当∠AEC=90°时,AE2+CE2=AC2,∴5+m2+(m+3)2=10,∴m=﹣1或﹣2,∴E3(1,﹣1),E4(1,﹣2),综上所述:点E(1,)或(1,﹣)或(1,﹣1)或(1,﹣2);(3)设AD的中点为I,∵A(﹣1,0),D(1,﹣4),∴AD==2,I(0,﹣2),∴PA⊥PD,∴∠ADP=90°,∴点P在以AD的中点I为圆心,为半径的圆上,∵BI==,∴PB最小=﹣.1.(2020•河北模拟)已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2)【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围.【分析】【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式即可求解;【尝试探索】①四边形MNDC′是平行四边形,则MN=DC′=2,即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,②MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,即可求解;【拓展延伸】(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分;(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即可求解.【解答】解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)•(4﹣6),解得:a=,故抛物线的表达式为:…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3或3,故k的值为:;②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵0,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤.2.(2018秋•宁城县期末)已知,如图,抛物线与x轴交点坐标为A(1,0),C(﹣3,0),(1)如图1,已知顶点坐标D为(﹣1,4)或B点(0,3),选择适当方法求抛物线的解析式;(2)如图2,在抛物线的对称轴DH上求作一点M,使△ABM的周长最小,并求出点M的坐标;(3)如图3,将图2中的对称轴向左移动,交x轴于点P(m,0)(﹣3<m<﹣1),与抛物线,线段BC的交点分别为点E、F,用含m的代数式表示线段EF的长度,并求出当m为何值时,线段EF最长.【分析】(1)根据顶点D坐标设其顶点式,再将点C(2)连接BC,交DH于点M,使△ABM周长最小,即AM+BM最小,先求出BC直线解析式,再令x=﹣1,求得M(﹣1,2);(3)由题意得出E(m,﹣m2﹣2m+3),F(m,m+3),据此可知EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3),再根据二次函数的性质可得答案.【解答】解:(1)由抛物线的顶点D的坐标(﹣1,4)可设其解析式为y=a(x+1)2+4,将点C(﹣3,0)代入,得:4a+4=0,解得a=﹣1,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)连接BC,交DH于点M,此时△ABM的周长最小,当y=0时,﹣(x+1)2+4=0,解得x=﹣3或x=1,则A(1,0),C(﹣3,0),当x=0时,y=3,则B(0,3),设直线BC的解析式为y=kx+b,将B(0,3),C(﹣3,0)代入得,解得:,∴直线BC解析式为y=x+3,当x=﹣1时,y=﹣1+3=2,所以点M坐标为(﹣1,2);(3)由题意知E(m,﹣m2﹣2m+3),F(m,m+3),则EF=EP﹣FP=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∴当m=﹣时,线段EF最长.3.(2021•桥西区模拟)如图1,抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,且CO=BO,连接BC.(1)求抛物线的解析式;(2)如图2,抛物线的顶点为D,其对称轴与线段BC交于点E,求线段DE的长度;(3)如图3,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,连接CP,CD,抛物线上是否存在点P,使△CDE∽△PCF,如果存在,求出点P的坐标,如果不存在,请说明理由.【分析】(1)根据题意可求得点C,B的坐标,将A,B坐标代入抛物线解析式求出a,b的值,即可得到抛物线解析式;(2)设直线BC的解析式为y=kx+b,将点C,B的坐标代入求得k,b的值,即可求得直线BC的解析式,再求DE即可;(3)根据△CDE∽△PCF,DE∥PF,可得:=,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),建立关于t的方程求解即可.【解答】解:(1)在抛物线y=ax2+bx+3中,令x=0,得y=3,∴C(0,3),∴CO=3,∵CO=BO,∴BO=3,∴B(3,0),∵A(﹣1,0),∴,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)设直线BC的解析式为y=kx+b,∵B(3,0),C(0,3),∴,解得:,∴直线BC的解析式为y=﹣x+3,∵抛物线y=﹣x2+2x+3的顶点D坐标为(1,4),∴当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=2;(3)∵PF∥DE,∴∠CED=∠CFP,当=时,△PCF∽△CDE,由D(1,4),C(0,3),E(1,2),利用勾股定理,可得CE==,DE=4﹣2=2,设点P坐标为(t,﹣t2+2t+3),点F坐标为(t,﹣t+3),∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,CF==t,∴=,∵t≠0,∴t=2,当t=2时,﹣t2+2t+3=﹣22+2×2+3=3,∴点P坐标为(2,3).4.(2022•和平区二模)如图,在平面直角坐标系中,已知抛物线顶点A的坐标为(﹣2,4),且经过坐标原点,与x轴负半轴交于点B.(1)求抛物线的函数表达式并直接写出点B的坐标;(2)过点A作AC⊥x轴于点C,若点D是y轴左侧的抛物线上一个动点(点D与点A不重合),过点D作DE⊥x轴于点E,连接AO,DO,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,求点D的坐标;(3)在(2)的条件下,当点D在第二象限时,在平面内存在一条直线,这条直线与抛物线在第二象限交于点F,在第三象限交于点G,且点A,点B,点D,到直线FG的距离都相等,请直接写出线段FG的长.【分析】(1)设该抛物线解析式为y=a(x+2)2+4(a≠0),把点(0,0)代入,即可求解;(2)根据题意得OC=2,AC=4,设点D(x,﹣x2﹣4x),则DE=|﹣x2﹣4x|,OE=﹣x,根据∠ACO=∠DEO=90°,可得当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,∠AOC=∠ODE或∠AOC=∠DOE,分两种讨论,即可求解;(3)求出直线BD的解析式y=x+14,直线BD与y轴交于(0,14),可得过点A平行于BD的直线AM的解析式为y=x+11,交y轴于(0,11),可得直线FG的的解析式为y=x+,联立方程组,得到点F.G的坐标,即可求解.【解答】解:(1)∵抛物线顶点的坐标为(﹣2,4),∴设抛物线解析式为y=a(x+2)2+4(a≠0),把点(0,0)代入得:0=a(x+2)2+4.解得:a=﹣1,∴抛物线解析式为y=﹣(x+2)2+4=﹣x2﹣4x.令y﹣0,则﹣x2﹣4x=0,解得:x1=﹣4,x2=0,∴点B(﹣4,0),∴抛物线解析式为y=﹣x2﹣4x.点B(﹣4,0);(2)∵AC⊥x轴,点A(﹣2,4),∴点C(﹣2,0),∴OC=2,AC=4,∵∠ACO=∠DEO=90°,∴当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,∠AOC=∠ODE或∠AOC=∠DOE,设D(x,﹣x2﹣4x),①当∠AOC=∠ODE时,△AOC∽△ODE,如图:∵∠AOC=∠ODE,∴tan∠AOC=tan∠ODE,∴==2,∴=2,∴﹣x=2(x2+4x)或﹣x=﹣2(x2+4x),∴x1=0(舍去),x2=﹣或x3=0(舍去),x4=﹣,∴点D的坐标为(﹣,﹣)或(﹣,);②当∠AOC=∠DOE时,△AOC∽△DOE,如图:∵∠AOC=∠DOE,∴tan∠AOC=tan∠DOE,∴==2,∴=2,∴﹣2x=x2+4x或2x=x2+4x,∴x1=0(舍去),x2=﹣6或x3=0(舍去),x4=﹣2(舍去),∴点D的坐标为(﹣6,﹣12);点D(﹣6,﹣12);综上所述,当以A,O,C为顶点的三角形与以D,O,E为顶点的三角形相似时,点D的坐标为(﹣6,﹣12)或(﹣,﹣)或(﹣,);(3)∵在(2)的条件下,点D在第二象限,∴点D的坐标为(﹣,),直线BD的解析式y=kx+m,∴,解得,∴直线BD的解析式y=x+14,直线BD与y轴交于(0,14),∴过点A平行于BD的直线AM的解析式为y=x+11,交y轴于(0,11),∵点A,点B,点D,到直线FG的距离都相等,∴直线FG的的解析式为y=x+,联立得,解得,,∴F(﹣,),G(﹣5,﹣5),∴FG==.5.(2022•鹿城区校级二模)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),B(5,0),与y轴交于点C.(1)求抛物线的解析式和顶点D的坐标.(2)连结AD,点E是对称轴与x轴的交点,过E作EF∥AD交抛物线于点F(F在E的右侧),过点F作FG∥x轴交ED于点H,交AD于点G,求HF的长.【分析】(1)把点A(﹣1,0),B(5,0)代入抛物线解析式即可求解;(2)延长FG交y轴于点I,根据A,E,D坐标求出AE=3,DE=9,在Rt△EAD中,tan∠EAD=3,再根据四边形AGFE是平行四边形,得出tan∠EFH=tan∠EAD=3,设HF=m,EH=3m,易证四边形OIHE是矩形,把点F(m+2,﹣3m)代入y=x2﹣4x﹣5,求出m即可.【解答】解:(1)把点A(﹣1,0),B(5,0)代入抛物线解析式,得:,解得:,∴y=x2﹣4x﹣5=(x﹣2)2﹣9,∴抛物线解析式为y=x2﹣4x﹣5,顶点D坐标为(2,﹣9);(2)延长FG交y轴于点I,∵A(﹣1,0),E(2,0),D(2,﹣9),∴AE=3,DE=9,∴在Rt△EAD中,,∵EF∥AD,FG∥x轴,∴四边形AGFE是平行四边形,∴tan∠EFH=tan∠EAD=3,∴在Rt△EHF中,EH=3HF,设HF=m,EH=3m,易证四边形OIHE是矩形,把点F(m+2,﹣3m)代入y=x2﹣4x﹣5,得,﹣3m=(m+2)2﹣4(m+2)﹣5,解得:或m=(舍去),∴.6.(2021•南岗区模拟)如图,抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;(2)点P为第一象限抛物线上一点,过点P作x轴的平行线,与抛物线的另一个交点为点G,连接CG交x轴于点N,设点P的横坐标为t,ON的长为d,求d与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PB,将线段PB绕着点P顺时针旋转90°得到线段PD,点D恰好落在y轴上,点E在线段OB上,连接PE,点Q在EB的延长线上,且EQ=PE,连接DQ交PE于点F,若PE=3PF,求QN的长.【分析】(1)运用待定系数法即可得出答案;(2)设P(t,t2﹣t﹣4),则G(1﹣t,t2﹣t﹣4),利用tan∠GCH==,求出CN,即可得出答案;(3)过点P作PT⊥x轴于点T,可证得△PDH≌△PBT(AAS),过点F作x轴的垂线,垂足为K,过点D作KF的垂线,垂足为R,KR与PH交于点M,再证得△DRF≌△QKF(ASA),过点Q作QW∥PD,可证得△DPF≌△QWF(AAS),过点Q作QZ⊥PE于点Z,再证明△EQZ≌△EPT(AAS),再利用HL证明Rt△QWZ≌Rt△PBT,设EB=m,运用勾股定理建立方程求解即可.【解答】解:(1)∵抛物线y=ax2+bx﹣4交x轴于点A(﹣3,0),B(4,0),∴,解得:,∴抛物线的解析式为;(2)如图1,设P(t,t2﹣t﹣4),∵抛物线的对称轴为直线,PG∥x轴,∴点G与点P是抛物线上的一对对称点,∴G(1﹣t,t2﹣t﹣4),设PG与y轴交于点H,则H(0,t2﹣t﹣4),在抛物线中,令x=0,得y=﹣4,∴C(0,﹣4),∴OC=4,又CH=t2﹣t﹣4﹣(﹣4)=t2﹣t,GH=t﹣1,∵tan∠GCH==,∴,解得:,∴d与t之间的函数解析式为d=;(3)如图2,过点P作PT⊥x轴于点T,∵∠DPB=∠PHO=∠HOB=∠PTO=∠PHD=90°,∴四边形PHOT为矩形,∴∠HPT=90°,∴∠DPH=∠BPT,∵PD=PB,∴△PDH≌△PBT(AAS),∴DH=BT,PH=PT,∴,解得:t1=6,t2=﹣2(舍),∴P(6,6),∴T(6,0),∴DH=BT=2,ON=d=2,过点F作x轴的垂线,垂足为K,过点D作KF的垂线,垂足为R,KR与PH交于点M,∵PE=3PF,∴EF=2PF,∵cos∠PFM=cos∠EFK,∴,∴FK=2FM,∵∠MPT=∠PTK=∠TKM=90°,∴四边形PMKT为矩形,∴MK=PT=6,∴FM=2,FK=4,同理四边形DHMR为矩形,∴DH=RM=2,RF=FK=4,∠R=∠FKQ=90°,∵∠DFR=∠KFQ,∴△DRF≌△QKF(ASA),∴DF=QF,过点Q作QW∥PD,∴∠DPF=∠QWF∵∠DFP=∠WFQ,DF=FQ,∴△DPF≌△QWF(AAS),∴DP=QW=PB,PF=WF,∴,过点Q作QZ⊥PE于点Z,∴∠EZQ=∠PTE=90°,∵∠PET=∠QEZ,EP=EQ,∴△EQZ≌△EPT(AAS),∴PT=QZ,EZ=ET,∵QW=PB,∴Rt△QWZ≌Rt△PBT(HL),∴WZ=BT,∴EW=EB.设EB=m,则EW=WF=FP=m,∴EP=3m,∵BT=2,∴ET=m+2,PT=6,在Rt△EPT中,∵PE2=ET2+PT2,∴(3m)2=(m+2)2+62,解得:,m2=﹣2(舍),∴,∴BQ=2BE=5,∵OB=4,∴OQ=9,∵ON=2,∴QN=OQ+ON=11.7.(2021•凉山州模拟)如图1,在平面直角坐标系中,已知B点坐标为(1,0),且OA=OC=3OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点,其中D点是该抛物线的顶点.(1)求抛物线的解析式;(2)判断△ADC的形状并且求△ADC的面积;(3)如图2,点P是该抛物线第三象限部分上的一个动点,过P点作PE⊥AC于E点,当PE的值最大时,求此时P点的坐标及PE的最大值.【分析】(1)根据B点坐标为(1,0),且OA=OC=3OB,得出B,C点的坐标,用待定系数法求解析式即可;(2)根据坐标求出三角形各边的长,利用勾股定理判断其为直角三角形,再用三角形面积公式求面积即可;(3)求出直线AC的解析式,过点P作PH∥y轴交AC于H,设出P点和H点坐标,用含x的代数式求出PE的值,根据二次函数性质求最值即可.【解答】解:(1)∵B点坐标为(1,0),∴OB=1,又∵OA=OC=3OB,∴OA=OC=3,∴A(﹣3,0),C(0,﹣3),将A,B,C三点代入解析式得,,解得,∴抛物线的解析式为:y=x2+2x﹣3;(2)由(1)知抛物线的解析式为y=x2+2x﹣3,∴对称轴为直线x=﹣=﹣1,当x=﹣1时,y=(﹣1)2+2×(﹣1)﹣3=﹣4,∴D点的坐标为(﹣1,﹣4),∴|AD|==2,|AC|==3,|CD|==,∵|AD|2=|AC|2+|CD|2,∴△ACD是直角三角形,S△ABC=|AC|•|CD|=×=3;(3)设直线AC的解析式为y=sx+t,代入A,C点坐标,得,解得,∴直线AC的解析式为y=﹣x﹣3,如右图,过点P作y轴的平行线交AC于点H,∵OA=OC,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHE=∠OCA=45°,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),∴PH=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x,∴PE=PH•sin∠PHE=(﹣x2﹣3x)×=﹣(x+)2+,∴当x=﹣时,PE有最大值为,此时P点的坐标为(﹣,﹣).8.(2022•无锡二模)已知抛物线y=mx2﹣2mx+3(m<0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=3OA.(1)求抛物线的函数表达式;(2)若M、N是第一象限的抛物线上不同的两点,且△BCN的面积总小于△BCM的面积,求点M的坐标;(3)若D为抛物线的顶点,P为第二象限的抛物线上的一点,连接BP、DP,分别交y轴于点E、F,若EF=OC,求点P的坐标.【分析】(1)设A(x1,0),B(x2,0),因为OB=3OA,所以x2=﹣3x1,又由于x1,x2是方程mx2﹣2mx+3=0的两根,所以x1+x2=2,从而求出x1的值,得到A点坐标,代入到解析式中,求出m,即可解决问题;(2)由题意可得,只要求得第一象限内M点,使△BCM面积最大,过M作y轴平行线交BC于G点,设M(a,﹣a2+2a+3),先求出直线BC的解析式,可以得到G(a,﹣a+3),从而得的MG=﹣a2+3a,利用S△MBC=S△MGC+S△MGB,得到S△MBC=,当a=时,△MBC面积最大,从而求得M点坐标;(3)由EF=得EF=1,过D作DQ∥y轴交BP于Q点,设出P点坐标,求出D点坐标和直线BP解析式,从而表示出DQ的长度,由△PEF∽△PQD,利用相似三角形对应边上的高的比等于相似比,列出方程,即可解决.【解答】解:(1)设A(x1,0),B(x2,0),∵OB=3OA,∴x2=﹣3x1,令y=0,则mx2﹣2mx+3=0,∵x1与x2是方程的两根,∴x1+x2=2,又x2=﹣3x1,∴x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),将x=﹣1代入到方程中得m=﹣1,∴抛物线的函数表达式为:y=﹣x2+2x+3;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),设直线BC解析式为y=kx+3,代入点B的坐标得,k=﹣1,∴直线BC的解析式为:y=﹣x+3,设M(a,﹣a2+2a+3),如图1,过M作MG∥y轴交直线BC于G点,则G(a,﹣a+3),∴MG=﹣a2+3a,∴S△MBC=S△MGC+S△MGB==,当a=时,△MBC面积最大,此时△BCN的面积总小于△BCM的面积,∴M();(3)如图2,由(1)可得,OC=3,∴EF=,设P(t,﹣t2+2t+3),∵B(3,0),∴直线BP的解析式为y=﹣(t+1)(x﹣3),∵y=﹣(x﹣1)2+4,∴D(1,4),过D作y轴的平行线交直线BP于Q点,∴Q(1,2t+2),∴DQ=2﹣2t,∵DQ∥y轴,∴△PEF∽△PQD,∴,∴,∴P().9.(2021•乳源县三模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c与x轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C(0,).(1)求抛物线的解析式;(2)若点M是抛物线的顶点,连接AM,CM,求△AMC的面积;(3)若点P是抛物线上的一个动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【分析】(1)用待定系数法即可求解;(2)△AMC的面积=S△MHC+S△MHA=×MH×OA,即可求解;(3)点D在直线AC上,设点D(m,﹣m+),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:=a(0﹣5)(0+1),解得a=﹣,故抛物线的表达式为y=﹣(x﹣5)(x+1)=﹣x2+2x+;(2)由抛物线的表达式得顶点M(2,),过点M作MH∥y轴交AC于点H,设直线AC的表达式为y=kx+t,则,解得,故直线AC的表达式为y=﹣x+,当x=2时,y=,则MH=﹣=3,则△AMC的面积=S△MHC+S△MHA=×MH×OA=×3×5=;(3)点D在直线AC上,设点D(m,﹣m+),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,则EF2=OD2=m2+(﹣m+)2=m2﹣m+,∵>0,故EF2存在最小值(即EF最小),此时m=1,故点D(1,2),∵点P、D的纵坐标相同,故2=﹣x2+2x+,解得x=2±,故点P的坐标为(2,2)或(2﹣,2).10.(2021•河池)在平面直角坐标系中,抛物线y=﹣(x﹣1)2+4与x轴交于A,B两点(A在B的右侧),与y轴交于点C.(1)求直线CA的解析式;(2)如图,直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,DG⊥CA于点G,若E为GA的中点,求m的值.(3)直线y=nx+n与抛物线交于M(x1,y1),N(x2,y2)两点,其中x1<x2.若x2﹣x1>3且y2﹣y1>0,结合函数图象,探究n的取值范围.【分析】(1)由y=﹣(x﹣1)2+4中,得A(3,0),B(﹣1,0),C(0,3),利用待定系数法即可得,直线CA的解析式为y=﹣x+3;(2)根据直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,可得D(m,﹣(m﹣1)2+4),且0<m<3,E(m,﹣m+3),F(m,0),从而AF=3﹣m,DE=﹣m2+3m,而△EAF是等腰直角三角形,可得AE=AF=3﹣m,△DEG是等腰直角三角形,即可列﹣m2+3m=(3﹣m),解得m=2或m=3(舍去);(3)由得或,①若3﹣n>﹣1,即n<4,根据x2﹣x1>3且y2﹣y1>0,可得3﹣n﹣(﹣1)>3,且﹣n2+4n﹣0>0,即解得0<n<1;②若3﹣n<﹣1,即n>4,可得:﹣1﹣(3﹣n)>3且0﹣(﹣n2+4n)>0,即解得n>7.【解答】解:(1)在y=﹣(x﹣1)2+4中,令x=0得y=3,令y=0得x=﹣1或3,∴A(3,0),B(﹣1,0),C(0,3),设直线CA的解析式为y=kx+b,则,解得,∴直线CA的解析式为y=﹣x+3;(2)∵直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,∴D(m,﹣(m﹣1)2+4),且0<m<3,E(m,﹣m+3),F(m,0),∴AF=3﹣m,DE=﹣(m﹣1)2+4﹣(﹣m+3)=﹣m2+3m,∵A(3,0),C(0,3),∴∠EAF=45°,△EAF是等腰直角三角形,∴AE=AF=3﹣m,∠DEG=∠AEF=45°,∴△DEG是等腰直角三角形,∴DE=GE,∵E为GA的中点,∴GE=AE=3﹣m,∴﹣m2+3m=(3﹣m),解得m=2或m=3,∵m=3时,D与A重合,舍去,∴m=2;(3)由得或,①若3﹣n>﹣1,即n<4,如图:∵x2﹣x1>3且y2﹣y1>0,∴3﹣n﹣(﹣1)>3,且﹣n2+4n﹣0>0,解得0<n<1;②若3﹣n<﹣1,即n>4,同理可得:﹣1﹣(3﹣n)>3且0﹣(﹣n2+4n)>0,解得n>7,综上所述,n的取值范围是0<n<1或n>7.11.(2021•桂林)如图,已知抛物线y=a(x﹣3)(x+6)过点A(﹣1,5)和点B(﹣5,m),与x轴的正半轴交于点C.(1)求a,m的值和点C的坐标;(2)若点P是x轴上的点,连接PB,PA,当=时,求点P的坐标;(3)在抛物线上是否存在点M,使A,B两点到直线MC的距离相等?若存在,求出满足条件的点M的横坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解即可.(2)设P(t,0),则有=,解方程,可得结论.(3)存在.连接AB,设AB的中点为T.分两种情形:①当直线CM经过AB的中点T时,满足条件.②CM′∥AB时,满足条件.根据方程组求出点M的坐标即可.【解答】解:(1)∵抛物线y=a(x﹣3)(x+6)过点A(﹣1,5),∴5=﹣20a,∴a=﹣,∴抛物线的解析式为y=﹣(x﹣3)(x+6),令y=0,则﹣(x﹣3)(x+6)=0,解得x=3或﹣6,∴C(3,0),当x=﹣5时,y=﹣×(﹣8)×1=2,∴B(﹣5,2),∴m=2.(2)设P(t,0),则有=,整理得,21t2+242t+621=0,解得t=﹣或﹣,经检验t=﹣或﹣是方程的解,∴满足条件的点P坐标为(﹣,0)或(﹣,0).(3)存在.连接AB,设AB的中点为T.①当直线CM经过AB的中点T时,满足条件.∵A(﹣1,5),B(﹣5,2),TA=TB,∴T(﹣3,),∵C(3,0),∴直线CT的解析式为y=﹣x+,由,解得(即点C)或,∴M(﹣,),②CM′∥AB时,满足条件,∵直线AB的解析式为y=x+,∴直线CM′的解析式为y=x﹣,由,解得(即点C)或,∴M′(﹣9,﹣9),综上所述,满足条件的点M的横坐标为﹣或﹣9.12.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.【分析】(1)利用待定系数法求解.(2)将函数代数式配方,由抛物线开口方向和对称轴直线方程求解.(3)①由0<PQ≤7求出m取值范围,②通过数形结合求解.【解答】解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当m=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ与图象有2个交点.13.(2020•武汉模拟)已知:在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1)则点A的坐标为(﹣1,0),点B的坐标为(3,0).(2)如图1,过点A的直线y=ax+a交y轴正半轴于点F,交抛物线于点D,过点B作BE∥y轴交AD于E,求证:AF=DE.(3)如图2,直线DE:y=kx+b与抛物线只有一个交点D,与对称轴交于点E,对称轴上存在点F,满足DF=FE.若a=1,求点F坐标.【分析】(1)令y=0,得ax2﹣2ax﹣3a=0,解出x即可;(2)过E,D分别作x轴,y轴的平行线,交于H,证明∴&△FAO≌△DEH即可;(3)令x^{2}﹣2x﹣3=kx+b得x2﹣(2+k)x﹣3﹣b=0,得出k与b的关系,然后求出D,E的坐标,根据FE=FD,列方程求出F的坐标.【解答】(1)令y=0,得ax2﹣2ax﹣3a=0即x2﹣2x﹣3=0得x1=3,x2=﹣1∴A(﹣1,0)B(3,0)(2)过E,D分别作x轴,y轴的平行线,交于H.令ax+a=ax2﹣2ax﹣3a得ax2﹣3ax﹣4a=0,∴x2﹣3x﹣4=0∴x1=4,x2=﹣1∴xD=4∴EH=AO=1=∠AOF=∠EHD,∠FAO=∠DEH∴△FAO≌△DEH∴AF=DE(3)令x^{2}﹣2x﹣3=kx+b得x2﹣(2+k)x﹣3﹣b=0(2+k)2+4(3+b)=0∴==∴∴=∴,∴==∴==∵EF=DF∴整理得∴yF=﹣F的坐标为(1,﹣)14.(2020•哈尔滨模拟)如图,抛物线y=ax2+bx+5经过坐标轴上A、B和C三点,连接AC,tanC=,5OA=3OB.(1)求抛物线的解析式;(2)点Q在第四象限的抛物线上且横坐标为t,连接BQ交y轴于点E,连接CQ、CB,△BCQ的面积为S,求S与t的函数解析式;(3)已知点D是抛物线的顶点,连接CQ,DH所在直线是抛物线的对称轴,连接QH,若∠BQC=45°,HR∥x轴交抛物线于点R,HQ=HR,求点R的坐标.【分析】(1)c=5,OC=5,tanC=,则OA=3,5OA=3OB,则OB=5,故点A、B、C的坐标分别为:(3,0)、(﹣5,0)、(0,5),即可求解;(2)S=CE×(xQ﹣xB)=×(5+t﹣5)×(t+5)=t2+t;(3)证明△CTE≌△QTJ(AAS),故CE=QJ=5m,JN=JQ﹣QN=5m﹣3m=2m,tan∠EQN=tan∠JCN,即,解得:EN=m或﹣6m(舍去﹣6m);CN=CE+EN=5m+m=6m,故点Q(3m,5﹣6m),将点Q的坐标代入抛物线表达式并解得:m=0(舍去)或,故点Q(4,﹣3),设:HR=k,则点R(k﹣1,﹣k2+),QS=yQ﹣yR=k2﹣,由勾股定理得:QS2+HS2=HQ2,即(k2﹣)2+25=k2,即可求解.【解答】解:(1)c=5,OC=5,tanC=,则OA=3,5OA=3OB,则OB=5,故点A、B、C的坐标分别为:(3,0)、(﹣5,0)、(0,5),则抛物线表达式为:y=a(x+5)(x﹣3)=a(x2+2x﹣15),即﹣15a=5,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+5;(2)设点Q(t,﹣t2﹣t+5),点B(﹣5,0),由点B、Q的坐标得:直线BQ的表达式为:y=﹣(t﹣3)(x+5),故点E(0,﹣t+5),S=CE×(xQ﹣xB)=×(5+t﹣5)×(t+5)=t2+t;(3)过点Q作QJ∥x轴交y轴于点N,交对称轴于点L,过点C作CT⊥BQ于点T,延长CT交QJ于点J,过点Q作y轴的平行线交x轴于点K,交HR于点S,则OKQN为矩形,OK=QN=t,由(2)知,CE=t,故QN:CE=3:5,设QN=3m,则CE=5m,∵∠BQC=45°,故CT=QT,∠EQN=90°﹣∠NEQ=90°﹣∠CET=∠TCE=∠JCN,故△CTE≌△QTJ(AAS),故CE=QJ=5m,JN=JQ﹣QN=5m﹣3m=2m,tan∠EQN=tan∠JCN,即,解得:EN=m或﹣6m(舍去﹣6m);CN=CE+EN=5m+m=6m,故点Q(3m,5﹣6m),将点Q的坐标代入抛物线表达式并解得:m=0(舍去)或,故点Q(4,﹣3),抛物线的顶点D坐标为:(﹣1,),QL=4+1=5=HS,设:HR=k,则点R(k﹣1,﹣k2+),QS=yQ﹣yR=k2﹣,由勾股定理得:QS2+HS2=HQ2,即(k2﹣)2+25=k2,解得:k=(不合题意值已舍去),故点R(﹣1,﹣6).15.(2019•衡阳)如图,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点N,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接CP,过点P作CP的垂线与y轴交于点E.(1)求该抛物线的函数关系表达式;(2)当点P在线段OB(点P不与O、B重合)上运动至何处时,线段OE的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点M,连接MN、MB.请问:△MBN的面积是否存在最大值?若存在,求出此时点M的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标代入二次函数表达式,即可求解;(2)设OP=x,则PB=3﹣x,由△POE∽△CBP得出比例线段,可表示OE的长,利用二次函数的性质可求出线段OE的最大值;(3)过点M作MH∥y轴交BN于点H,由S△MNB=S△BMH+S△MNH=即可求解.【解答】解:(1))∵抛物线y=x2+bx+c经过A(﹣1,0),B(3,0),把A、B两点坐标代入上式,,解得:,故抛物线函数关系表达式为y=x2﹣2x﹣3;(2)∵A(﹣1,0),点B(3,0),∴AB=OA+OB=1+3=4,∵正方形ABCD中,∠ABC=90°,PC⊥PE,∴∠OPE+∠CPB=90°,∠CPB+∠PCB=90°,∴∠OPE=∠PCB,又∵∠EOP=∠PBC=90°,∴△POE∽△CBP,∴,设OP=x,则PB=3﹣x,∴,∴OE=,∵0<x<3,∴时,线段OE长有最大值,最大值为.即OP=时,点P在线段OB上运动至P(,0)时,线段OE有最大值.最大值是.(3)存在.如图,过点M作MH∥y轴交BN于点H,∵抛物线的解析式为y=x2﹣2x﹣3,∴x=0,y=﹣3,∴N点坐标为(0,﹣3),设直线BN的解析式为y=kx+b,∴,∴,∴直线BN的解析式为y=x﹣3,设M(a,a2﹣2a﹣3),则H(a,a﹣3),∴MH=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴S△MNB=S△BMH+S△MNH===,∵,∴a=时,△MBN的面积有最大值,最大值是,此时M点的坐标为().16.(2020•天津)已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?【分析】(Ⅰ)将A(1,0)代入抛物线的解析式求出b=2,由配方法可求出顶点坐标;(Ⅱ)①根据题意得出a=1,b=﹣m﹣1.求出抛物线的解析式为y=x2﹣(m+1)x+m.则点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).根据题意求出m的值,可求出CF的长,则可得出答案;②得出CN=EF=.求出MC=﹣m,当MC≥,即m≤﹣1时,当MC<,即﹣1<m<0时,根据MN的最小值可分别求出m的值即可.【解答】解:(Ⅰ)当a=1,m=﹣3时,抛物线的解析式为y=x2+bx﹣3.∵抛物线经过点A(1,0),∴0=1+b﹣3,解得b=2,∴抛物线的解析式为y=x2+2x﹣3.∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点坐标为(﹣1,﹣4).(Ⅱ)①∵抛物线y=ax2+bx+m经过点A(1,0)和M(m,0),m<0,∴0=a+b+m,0=am2+bm+m,即am+b+1=0.∴a=1,b=﹣m﹣1.∴抛物线的解析式为y=x2﹣(m+1)x+m.根据题意得,点C(0,m),点E(m+1,m),过点A作AH⊥l于点H,由点A(1,0),得点H(1,m).在Rt△EAH中,EH=1﹣(m+1)=﹣m,HA=0﹣m=﹣m,∴AE==﹣m,∵AE=EF=2,∴﹣m=2,解得m=﹣2.此时,点E(﹣1,﹣2),点C(0,﹣2),有EC=1.∵点F在y轴上,∴在Rt△EFC中,CF==.∴点F的坐标为(0,﹣2﹣)或(0,﹣2+).②由N是EF的中点,连接CN,CM,得CN=EF=.根据题意,点N在以点C为圆心、为半径的圆上,由点M(m,0),点C(0,m),得MO=﹣m,CO=﹣m,∴在Rt△MCO中,MC==﹣m.当MC≥,即m≤﹣1时,满足条件的点N在线段MC上.MN的最小值为MC﹣NC=﹣m﹣=,解得m=﹣;当MC<,即﹣1<m<0时,满足条件的点N落在线段CM的延长线上,MN的最小值为NC﹣MC=﹣(﹣m)=,解得m=﹣.∴当m的值为﹣或﹣时,MN的最小值是.17.(2020•凉山州)如图,二次函数y=ax2+bx+c的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.【分析】(1)将点O、A、B的坐标代入抛物线表达式,即可求解;(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x轴正半轴的夹角为60°,故设CD的表达式为:y=﹣x+b,而OB中点的坐标为(,),将该点坐标代入CD表达式,即可求解;(3)过点P作y轴额平行线交CD于点Q,PQ=﹣x+﹣(x2﹣x)=﹣x2﹣x+,即可求解.【解答】解:(1)将点O、A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣x;(2)由点B的坐标知,直线BO的倾斜角为30°,∵BO⊥AD,则∠BOA+∠BOC=90°,∠BOC+∠OCA=90°,∴∠OCA=∠BOA=30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新型棉纱销售合同
- 2024年度音乐版权使用许可合同
- 2024年技术研发合作合同与技术成果共享协议
- 2024年房地产买卖与物业管理合同
- 2024年技术咨询合同标的及咨询内容和期限
- 2024年数据中心彩钢冷却塔施工合同
- 2024年技术转让合同:技术成果的转让方与受让方之间的详细约定
- 2024年房屋租赁权益协议
- DB4116T 042-2023 规模化养鸡场臭气防控技术规范
- 2024年授权合同-润滑油销售业务
- DBJ53/T-39-2020 云南省民用建筑节能设计标准
- 2022版义务教育数学课程标准解读课件PPT模板
- 实验五 PCR扩增课件
- 马拉松运动医疗支援培训课件
- 中医药宣传手册
- 不良资产处置尽职指引
- 人教部编版七年级历史上册第19课 北魏政治和北方民族大交融课件(23张PPT)
- 机械设备定期检查维修保养使用台账
- 丽声北极星分级绘本第四级上 Stop!Everyone Stop!教学设计
- 小学科学教育科学三年级上册天气《认识气温计》教学设计
- 液化气站气质分析报告管理制度
评论
0/150
提交评论