四川省资阳市高中2025届高一下数学期末复习检测模拟试题含解析_第1页
四川省资阳市高中2025届高一下数学期末复习检测模拟试题含解析_第2页
四川省资阳市高中2025届高一下数学期末复习检测模拟试题含解析_第3页
四川省资阳市高中2025届高一下数学期末复习检测模拟试题含解析_第4页
四川省资阳市高中2025届高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省资阳市高中(2025届高一下数学期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线,平面,且,下列条件中能推出的是()A. B. C. D.与相交2.函数的部分图像如图所示,如果,且,则等于()A. B. C. D.13.在复平面内,复数对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数,点A、B分别为图象在y轴右侧的第一个最高点和第一个最低点,O为坐标原点,若△OAB为锐角三角形,则的取值范围为()A. B. C. D.5.设函数f(x)是定义在R上的奇函数,当x<0时,f(x)=-x2-5xA.(-1,2) B.(-1,3) C.(-2,3) D.(-2,4)6.下列三角方程的解集错误的是()A.方程的解集是B.方程的解集是C.方程的解集是D.方程(是锐角)的解集是7.已知不等式的解集是,则()A. B.1 C. D.38.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形9.已知,,则()A. B. C. D.10.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.200二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则______.12.已知直线分别与x轴、y轴交于A,B两点,则等于________.13.在中,,,为角,,所对的边,点为的重心,若,则的取值范围为______.14.已知,,,则的最小值为__________.15.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.16.如图,在中,,,点D为BC的中点,设,.的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角对应的边分别是,且.(1)求的周长;(2)求的值.18.已知函数f(x)=sin22x-π4(1)求当t=1时,求fπ(2)求gt(3)当-12≤t≤1时,要使关于t的方程g(t)=19.已知的内角的对边分别为,若向量,且.(1)求角的值;(2)已知的外接圆半径为,求周长的取值范围.20.已知数列中,,.(1)求证:是等差数列,并求的通项公式;(2)数列满足,求数列的前项和.21.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据线面垂直的性质,逐项判断即可得出结果.【详解】A中,若,由,可得;故A不满足题意;B中,若,由,可得;故B不满足题意;C中,若,由,可得;故C正确;D中,若与相交,由,可得异面或平,故D不满足题意.故选C【点睛】本题主要考查线面垂直的性质,熟记线面垂直的性质定理即可,属于常考题型.2、D【解析】

试题分析:观察图象可知,其在的对称轴为,由已知,选.考点:正弦型函数的图象和性质3、D【解析】

利用复数的运算法则、几何意义即可得出.【详解】在复平面内,复数==1﹣i对应的点(1,﹣1)位于第四象限.故选D.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4、B【解析】

△OAB为锐角三角形等价于,再运算即可得解.【详解】解:由题意可得,,由△OAB为锐角三角形,则,即,解得:,即的取值范围为,故选:B.【点睛】本题考查了三角函数图像的性质,重点考查了向量数量积的运算,属中档题.5、C【解析】

根据题意,结合函数的奇偶性分析可得函数的解析式,作出函数图象,结合不等式和二次函数的性质以及函数图象中的递减区间,分析可得答案.【详解】根据题意,设x>0,则-x<0,所以f(-x)=-x因为f(x)是定义在R上的奇函数,所以f(-x)=-x所以f(x)=x即x≥0时,当x<0时,f(x)=-x则f(x)的图象如图:在区间(-5若f(x)-f(x-1)<0,即f(x-1)>f(x),又由x-1<x,且f(-3)=f(-2),f(2)=f(3),必有x-1>-3x<3时,f(x)-f(x-1)<0解得-2<x<3,因此不等式的解集是(-2,3),故选C.【点睛】本题主要考查了函数奇偶性的应用,利用函数的奇偶性求出函数的解析式,根据图象解不等式是本题的关键,属于难题.6、B【解析】

根据余弦函数的性质可判断B是错误的.【详解】因为,故无解,故B错.对于A,的解集为,故A正确.对于C,的解集是,故C正确.对于D,,.因为为锐角,,所以或或,所以或或,故D正确.故选:B.【点睛】本题考查三角方程的解,注意对于三角方程,我们需掌握有解的条件和其通解公式,而给定范围上的解,需结合整体的范围来讨论,本题属于基础题.7、A【解析】

的两个解为-1和2.【详解】【点睛】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。8、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.9、A【解析】

由,代入运算即可得解.【详解】解:因为,,所以.故选:A.【点睛】本题考查了两角差的正切公式,属基础题.10、C【解析】

根据频率分布直方图求出得分在的频率,即可得解.【详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【点睛】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.12、5【解析】

分别求得A,B的坐标,再用两点间的距离公式求解.【详解】根据题意令得所以令得所以所以故答案为:5【点睛】本题主要考查点坐标的求法和两点间的距离公式,还考查了运算求解的能力,属于基础题.13、【解析】

在中,延长交于,由重心的性质,找到、和的关系,在和中利用余弦定理分别表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范围求解即可.【详解】画出,连接,并延长交于,因为是的重心,所以为中点,因为,所以,由重心的性质,,在中,由余弦定理得,,在中,由余弦定理得,因为,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案为:【点睛】本题主要考查三角形重心的性质、余弦定理解三角形和基本不等式求最值,考查学生的分析转化能力,属于中档题.14、25【解析】

变形后,利用基本不等式可得.【详解】当且仅当,即,时取等号.故答案为:25【点睛】本题考查了利用基本不等式求最值,属于基础题.15、【解析】

先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.16、【解析】

在和在中,根据正弦定理,分别表示出.由可得等式,代入已知条件化简即可得解.【详解】在中,由正弦定理可得,则在中,由正弦定理可得,则点D为BC的中点,则所以因为,,由诱导公式可知代入上述两式可得所以故答案为:【点睛】本题考查了正弦定理的简单应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由余弦定理求得,从而得周长;(2)由余弦定理求得,由平方关系得,同理得,然后由两角差的余弦公式得结论.【详解】解:(1)在中,,由余弦定理,得,即,∴的周长为(2)由,得,由,得,于是.【点睛】本题考查余弦定理和两角差的余弦公式,考查同角间的三角函数关系式,属于基础题.18、(1)-4(2)g(t)=t2【解析】

(1)直接代入计算得解;(2)先求出sin(2x-π4)∈[-12,1]【详解】(1)当t=1时,f(x)=sin22x-(2)因为x∈[π24,πf(x)=[sin(2x-当t<-12时,则当sin当-12≤t≤1时,则当当t>1时,则当sin(2x-π故g(t)=(3)当-12≤t≤1时,g(t)=-6t+1,令欲使g(t)=kt2-9有一个实根,则只需h(-解得k≤-2或所以k的范围:(-【点睛】本题主要考查三角函数的范围的计算,考查二次函数的最值的求法和方程的零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.19、(1)(2)【解析】试题分析:(1)由,得,利用正弦定理统一到角上易得(2)根据题意,得,由余弦定理,得,结合均值不等式可得,所以的最大值为4,又,从而得到周长的取值范围.试题解析:(1)由,得.由正弦定理,得,即.在中,由,得.又,所以.(2)根据题意,得.由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为4.又,所以,所以.所以的周长的取值范围为.20、(1)证明见解析,(2)【解析】

(1)由,两边取倒数,得到,根据等差数列的定义证明等差数列,,再利用通项公式求得,从而得到..(2)根据(1)的结论,再用错位相减法求其前n项和.【详解】(1)因为,所以,即,所以是首项为1,公差为的等差数列,所以,即.(2)由(1)知所以①两边同乘以得:②①-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论