四川省金堂中学2025届高一下数学期末联考试题含解析_第1页
四川省金堂中学2025届高一下数学期末联考试题含解析_第2页
四川省金堂中学2025届高一下数学期末联考试题含解析_第3页
四川省金堂中学2025届高一下数学期末联考试题含解析_第4页
四川省金堂中学2025届高一下数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省金堂中学2025届高一下数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若三棱锥的所有顶点都在球的球面上,平面,,,且三棱锥的体积为,则球的体积为()A. B. C. D.2.已知向量,则与的夹角为()A. B. C. D.3.如图,函数与坐标轴的三个交点P,Q,R满足,,M为QR的中点,,则A的值为()A. B. C. D.4.若等差数列和的公差均为,则下列数列中不为等差数列的是()A.(为常数) B.C. D.5.设△ABC的内角A,B,C所对的边长分别为a,b,c,且,则的最大值为()A. B.1 C. D.6.若正数满足,则的最小值为A. B.C. D.37.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B. C. D.8.问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②Ⅱ B.①Ⅲ,②Ⅰ C.①Ⅱ,②Ⅲ D.①Ⅲ,②Ⅱ9.设是两条不同的直线,是两个不同的平面,则下列命题中正确的个数为①若,,则②若,则③若,则④若,则A.1 B.2 C.3 D.410.等差数列的前项和为,若,且,则()A.10 B.7 C.12 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的前n项和为,若,,,则________12.已知一个铁球的体积为,则该铁球的表面积为________.13.已知3a=2,则32a=____,log318﹣a=_____14.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;15.把函数的图象向左平移个单位长度,所得图象正好关于原点对称,则的最小值为________.16.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆(为坐标原点),直线.(1)过直线上任意一点作圆的两条切线,切点分别为,求四边形面积的最小值.(2)过点的直线分别与圆交于点(不与重合),若,试问直线是否过定点?并说明理由.18.在等差数列中,,(1)求的通项公式;(2)求的前n项和19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.21.(1)计算:;(2)化简:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由的体积计算得高,已知将三棱锥的外接球,转化为长2,宽2,高的长方体的外接球,求出半径,可得答案.【详解】∵,,故三棱锥的底面面积为,由平面,得,又三棱锥的体积为,得,所以三棱锥的外接球,相当于长2,宽2,高的长方体的外接球,故球半径,得,故外接球的体积.故选:A.【点睛】本题考查了三棱锥外接球的体积,三棱锥体积公式的应用,根据已知计算出球的半径是解答的关键,属于中档题.2、D【解析】

根据题意,由向量数量积的计算公式可得cosθ的值,据此分析可得答案.【详解】设与的夹角为θ,由、的坐标可得||=5,||=3,•5×0+5×(﹣3)=﹣15,故,所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题.3、D【解析】

用周期表示出点坐标,从而又可得点坐标,再求出点坐标后利用求得,得.【详解】记函数的周期,则,因为,∴,是中点,则,∴,解得,∴,由得,∵,∴,,,∴,故选:D.【点睛】本题考查求三角函数的解析式,掌握正弦函数的图象与性质是解题关键.4、D【解析】

利用等差数列的定义对选项逐一进行判断,可得出正确的选项.【详解】数列和是公差均为的等差数列,则,,.对于A选项,,数列(为常数)是等差数列;对于B选项,,数列是等差数列;对于C选项,,所以,数列是等差数列;对于D选项,,不是常数,所以,数列不是等差数列.故选:D.【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.5、D【解析】

根据正弦定理将已知等式化简得,再根据差角正切公式以及基本不等式可得结论.【详解】由正弦定理以及,可得,在中,代入上式中整理得,,即,即,且,所以,当且仅当,即时取等号.故选:D.【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.6、A【解析】

由,利用基本不等式,即可求解,得到答案.【详解】由题意,因为,则,当且仅当,即时等号成立,所以的最小值为,故选A.【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中合理构造,利用基本不是准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、A【解析】

根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.8、B【解析】解:(1)中由于小区中各个家庭收入水平之间存在明显差别故(1)要采用分层抽样的方法(2)中由于总体数目不多,而样本容量不大故(2)要采用简单随机抽样故问题和方法配对正确的是:(1)Ⅲ(2)Ⅰ.故选B.9、A【解析】

根据面面垂直的定义判断①③错误,由面面平行的性质判断②错误,由线面垂直性质、面面垂直的判定定理判定④正确.【详解】如图正方体,平面是平面,平面是平面,但两直线与不垂直,①错;平面是平面,平面是平面,但两直线与不平行,②错;直线是直线,直线是直线,满足,但平面与平面不垂直,③错;由得,∵,过作平面与平面交于直线,则,于是,∴,④正确.∴只有一个命题正确.故选A.【点睛】本题考查空间直线与平面、平面与平面的位置关系.对一个命题不正确,可只举一例说明即可.对正确的命题一般需要证明.10、C【解析】

由等差数列的前项和公式解得,由,得,由此能求出的值。【详解】解:差数列的前n项和为,,,解得,解得,故选:C。【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.12、.【解析】

通过球的体积求出球的半径,然后求出球的表面积.【详解】球的体积为球的半径球的表面积为:故答案为:【点睛】本题考查球的表面积与体积的求法,考查计算能力,属于基础题.13、42.【解析】

由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.14、【解析】

先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.15、【解析】

根据条件先求出平移后的函数表达式为,令即可得解.【详解】由题意可得平移后的函数表达式为,图象正好关于原点对称,即,又,的最小值为.故答案为:.【点睛】本题考查了函数图像的平移以及三角函数的图像与性质,属于基础题.16、【解析】

由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)12;(2)过定点,理由见解析【解析】

(1)由,得过点的切线长,所以四边形的面积为,即可得到本题答案;(2)设直线的方程为,则直线的方程为.联立方程,消去,整理得,得,,所以,令,即可得到本题答案.【详解】(1)由题意可得圆心到直线的距离为,从而,则过点的切线长.故四边形的面积为,即四边形面积的最小值为12.(2)因为,所以直线与直线的斜率都存在,且不为0.设直线的方程为,则直线的方程为.联立方程,消去,整理得解得或,则.同理可得.所以.令,得,解得.取,可以证得,所以直线过定点.当时,轴,易知与均为正三角形,直线的方程为,也过定点.综上,直线过定点.【点睛】本题主要考查与椭圆相关的四边形面积的范围问题以及与椭圆有关的直线过定点问题,联立直线方程与椭圆方程,利用韦达定理是解决此类问题的常用方法.18、(1);(2)【解析】试题分析:(1)根据已知数列为等差数列,结合数列的性质可知:前3项和,所以,又因为,所以公差,再根据等差数列通项公式,可以求得.本问考查等差数列的通项公式及等差数列的性质,属于对基础知识的考查,为容易题,要求学生必须掌握.(2)由于为等差数列,所以可以根据重要结论得知:数列为等比数列,可以根据等比数列的定义进行证明,即,符合等比数列定义,因此数列是等比数列,首项为,公比为2,所以问题转化为求以4为首项,2为公比的等比数列的前n项和,根据公式有.本问考查等比数列定义及前n项和公式.属于对基础知识的考查.试题解析:(1)又(2)由(1)知得:是以4为首项2为公比的等比数列考点:1.等差数列;2.等比数列.19、(1),,(2)猜想:,证明见解析【解析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(1)2x+y-2=0;(2)x2+y2+2x+2y-8=0【解析】

(1)根据高与底边所在直线垂直确定斜率,再由其经过点,从而由点斜式得到高所在直线方程,再写成一般式.(2)设出的外接圆的一般方程,将三个顶点坐标代入得到关于的方程组,从而求出外接圆的方程.【详解】(1)直线AB的斜率为,AB边上的高所在直线的斜率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论