福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省沙县金沙高级中学2025届高一数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,且为第二象限角,则()A. B. C. D.2.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.43.执行如图所示的程序框图,若输入,则输出的数等于()A. B. C. D.4.已知为等差数列,为其前项和.若,则()A. B. C. D.5.设为实数,且,则下列不等式成立的是()A. B. C. D.6.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.7.已知数列是首项为,公差为的等差数列,若,则()A. B. C. D.8.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.649.在锐角中,若,,,则()A. B. C. D.10.在△ABC中,,则△ABC为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的前项和为,若,且,则_____.12.直线与直线的交点为,则________.13.在数列中,,则______________.14.设数列的前项和为满足:,则_________.15.已知两个正实数x,y满足=2,且恒有x+2y﹣m>0,则实数m的取值范围是______________16.在平面直角坐标系中,点到直线的距离为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.18.已知,,且(1)求函数的解析式;(2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值19.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.20.将边长分别为、、、…、、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式;(3)定义,记,且恒成立,求的取值范围.21.已知函数满足.(1)若,对任意都有,求的取值范围;(2)是否存在实数,,使得不等式对一切实数恒成立?若存在,请求出,,使;若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

首先根据题意得到,,再计算即可.【详解】因为,且为第二象限角,,..故选:D【点睛】本题主要考查正切二倍角的计算,同时考查了三角函数的诱导公式和同角三角函数的关系,属于简单题.2、B【解析】

对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.3、B【解析】

模拟执行循环体的过程,即可得到结果.【详解】根据程序框图,模拟执行如下:,满足,,满足,,满足,,不满足,输出.故选:B.【点睛】本题考查程序框图中循环体的执行,属基础题.4、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.5、C【解析】

本题首先可根据判断出项错误,然后令可判断出项和项错误,即可得出结果。【详解】因为,所以,故错;当时,,故错;当时,,故错,故选C。【点睛】本题考查不等式的基本性质,主要考查通过不等式性质与比较法来比较实数的大小,可借助取特殊值的方法来进行判断,是简单题。6、A【解析】

分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.7、C【解析】

本题首先可根据首项为以及公差为求出数列的通项公式,然后根据以及数列的通项公式即可求出答案.【详解】因为数列为首项,公差的等差数列,所以,因为所以,,故选C.【点睛】本题考查如何判断实数为数列中的哪一项,主要考查等差数列的通项公式的求法,等差数列的通项公式为,考查计算能力,是简单题.8、A【解析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9、D【解析】

由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.10、C【解析】

直接利用正弦定理余弦定理化简得到,即得解.【详解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案为:C【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理水平.二、填空题:本大题共6小题,每小题5分,共30分。11、4或1024【解析】

当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.12、【解析】

(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。13、20【解析】

首先根据已知得到:是等差数列,公差,再计算即可.【详解】因为,所以数列是等差数列,公差..故答案为:【点睛】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.14、【解析】

利用,求得关于的递推关系式,利用配凑法证得是等比数列,由此求得数列的通项公式,进而求得的表达式,从而求得的值.【详解】当时,.由于,而,故,故答案为:.【点睛】本小题主要考查配凑法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.15、(-∞,1)【解析】

由x+2y(x+2y)()(1),运用基本不等式可得x+2y的最小值,由题意可得m<x+2y的最小值.【详解】两个正实数x,y满足2,则x+2y(x+2y)()(1)(1+2)=1,当且仅当x=2y=2时,上式取得等号,x+2y﹣m>0,即为m<x+2y,由题意可得m<1.故答案为:(﹣∞,1).【点睛】本题考查基本不等式的运用:“乘1法”求最值,考查不等式恒成立问题解法,注意运用转化思想,属于中档题.16、2【解析】

利用点到直线的距离公式即可得到答案。【详解】由点到直线的距离公式可知点到直线的距离故答案为2【点睛】本题主要考查点到直线的距离,熟练掌握公式是解题的关键,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】

(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.18、(1)(2)【解析】试题分析:(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质19、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】

(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.20、(1);(2),,;(3).【解析】

(1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。【详解】(1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是:;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故;(2)由(1)知,,,所以,,当时,当时,,综上,数列的通项公式为,。(3)由(2)知,,,由题意可得,恒成立,①当时,,即,所以,②当时,,即,所以,③当时,,即,所以,综上,。【点睛】本题主要考查数列的通项公式求法,数列不等式恒成立问题的解法以及分类讨论思想的运用,意在考查学生逻辑推理能力及

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论