




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省黄冈市黄梅县第二中学高一数学第二学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列的前项和为,且,若,,则的值为()A.15 B.16 C.17 D.182.在中,若,则的面积为().A.8 B.2 C. D.43.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.404.一个四面体的三视图如图所示,则该四面体的表面积是()A. B.C. D.5.如图,四棱锥的底面为平行四边形,,则三棱锥与三棱锥的体积比为()A. B. C. D.6.已知在中,,那么的值为()A. B. C. D.7.在中,,,,是外接圆上一动点,若,则的最大值是()A.1 B. C. D.28.已知幂函数过点,则的值为()A. B.1 C.3 D.69.函数是()A.奇函数 B.非奇非偶函数 C.偶函数 D.既是奇函数又是偶函数10.若过点,的直线与直线平行,则的值为()A.1 B.4 C.1或3 D.1或4二、填空题:本大题共6小题,每小题5分,共30分。11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.12.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.13.已知数列的前n项和,则________.14.已知等比数列an中,a3=2,a15.设常数,函数,若的反函数的图像经过点,则_______.16.若圆与圆的公共弦长为,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角,,所对的边分别是,,,且.(1)求角;(2)若,求.18.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.19.为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第,,组回答正确的人中用分层抽样的方法抽取人,求第,,组每组各抽取多少人?(3)通过直方图求出年龄的众数,平均数.20.已知直线l经过点,并且其倾斜角等于直线的倾斜角的2倍.求直线l的方程.21.已知数列为递增的等差数列,,且成等比数列.数列的前项和为,且满足.(1)求,的通项公式;(2)令,求的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
推导出数列是等差数列,由解得,由此利用能求出的值.【详解】数列的前项和为,且数列是等差数列解得解得故选:【点睛】本题考查等差数列的判定和基本量的求解,属于基础题.2、C【解析】
由正弦定理结合已知,可以得到的关系,再根据余弦定理结合,可以求出的值,再利用三角形面积公式求出三角形的面积即可.【详解】由正弦定理可知:,而,所以有,由余弦定理可知:,所以,因此的面积为,故本题选C.【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力.3、B【解析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.4、B【解析】
试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面平面,,且,,所以,与均为正三角形,且边长为,所以,故该三棱锥的表面各为,故选B.考点:1.三视图;2.多面体的表面积与体积.5、C【解析】
先由题意,得到,推出,再由推出,由,进而可得出结果.【详解】因为底面为平行四边形,所以,所以,因为,所以,所以,所以,因此.故选C【点睛】本题主要考查棱锥体积之比,熟记棱锥的体积公式,以及等体积法的应用即可,属于常考题型.6、A【解析】
,不妨设,,则,选A.7、C【解析】
以的中点为原点,建立如图所示的平面直角坐标系,设M的坐标为,,求出点的坐标,得到,根据正弦函数的图象和性质即可求出答案.【详解】以的中点O为原点,以为x轴,建立如图所示的平面直角坐标系,则外接圆的方程为,设M的坐标为,,过点作垂直轴,,,,,,,,,,,,,,,,,,,,,,,其中,,当时,有最大值,最大值为,故选C.【点睛】本题考查了向量的坐标运算和向量的数乘运算和正弦函数的图象和性质,以及直角三角形的问题,考查了学生的分析解决问题的能力,属于难题.8、C【解析】
设,代入点的坐标,求得,然后再求函数值.【详解】设,由题意,,即,∴.故选:C.【点睛】本题考查幂函数的解析式,属于基础题.9、C【解析】
利用诱导公式将函数的解析式化简,然后利用定义判断出函数的奇偶性.【详解】由诱导公式得,该函数的定义域为,关于原点对称,且,因此,函数为偶函数,故选C.【点睛】本题考查函数奇偶性的判断,解题时要将函数解析式进行简化,然后利用奇偶性的定义进行判断,考查分析问题和解决问题的能力,属于基础题.10、A【解析】
首先设一条与已知直线平行的直线,点,代入直线方程即可求出的值.【详解】设与直线平行的直线:,点,代入直线方程,有.故选:A.【点睛】本题考查了利用直线的平行关系求参数,属于基础题.注意直线与直线在时相互平行.二、填空题:本大题共6小题,每小题5分,共30分。11、371【解析】
由系统抽样,编号是等距出现的规律可得,分层抽样是按比例抽取人数.【详解】第8组编号是22+5+5+5=37,分层抽样,40岁以下抽取的人数为50%×40=1(人).故答案为:37;1.【点睛】本题考查系统抽样和分层抽样,属于基础题.12、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.13、【解析】
先利用求出,在利用裂项求和即可.【详解】解:当时,,当时,,综上,,,,故答案为:.【点睛】本题考查和的关系求通项公式,以及裂项求和,是基础题.14、4【解析】
先计算a5【详解】aaa故答案为4【点睛】本题考查了等比数列的计算,意在考查学生的计算能力.15、1【解析】
反函数图象过(2,1),等价于原函数的图象过(1,2),代点即可求得.【详解】依题意知:f(x)=lg(x+a)的图象过(1,2),∴lg(1+a)=2,解得a=1.故答案为:1【点睛】本题考查了反函数,熟记其性质是关键,属基础题.16、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用正弦定理化简即得;(2)由正弦定理得,再结合余弦定理可得.【详解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1),(2)【解析】
(1)首先根据正弦定理得到,得到,在求即可.(2)首先根据得到,在根据余弦定理即可求出的长.【详解】(1)在中,,即.,或(舍去).所以.(2),.在中,由余弦定理知:【点睛】本题第一问考查正弦定理,第二问考查余弦定理,同时考查了学生的计算能力,属于中档题.19、(1);(2)第组抽取人,第组抽取人,第组抽取人;(3)40,.【解析】
(1)由频率分布表得第四组人数为25人,由频率分布直方图得第四组的频率为0.25,从而求出.由此求出各组人数,进而能求出,,,的值.(2)由第2,3,4组回答正确的人分别有18、27、9人,从中用分层抽样的方法抽取6人,由此能求出第2,3,4组每组各抽取多少人.(3)由频率分布直方图能求出年龄的众数,平均数.【详解】(1)由频率分布表得第四组人数为:人,由频率分布直方图得第四组的频率为,.第一组抽取的人数为:人,第二组抽取的人数为:人,第三组抽取的人数为:人,第五组抽取的人数为:人,.(2)第,,组回答正确的人分别有、、人,从中用分层抽样的方法抽取人,第组抽取:人,第组抽取:人,第组抽取:人.(3)由频率分布直方图得:年龄的众数为:,年龄的平均数为:【点睛】本题考查频率、频数、众数、平均数的求法,考查分层抽样的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.20、【解析】
求出直线的倾斜角,可得所求直线的倾斜角,从而可得斜率,再利用点斜式可得结果.【详解】因为直线的斜率为,所以其倾斜角为30°,所以,所求直线的倾斜角为60°故所求直线的斜率为,又所求直线经过点,所以其方程为,即,故答案为:.【点睛】本题主要考查直线的斜率与倾斜角,考查了直线点斜式方程的应用,意在考查对基础知识的掌握情况,属于基础题.21、(1),(2)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东舞蹈戏剧职业学院高职单招(数学)历年真题考点含答案解析
- 2025年广东机电职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 2025年山东医学高等专科学校高职单招(数学)历年真题考点含答案解析
- 2025年山东商务职业学院高职单招职业适应性测试历年(2019-2024年)真题考点试卷含答案解析
- 2025年安徽邮电职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年宁波城市职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年宁夏体育职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 初中科普教育课程
- 糖尿病患者健康管理
- 腱鞘囊肿术后护理措施
- 100以内整十数加减法100道口算题(19套)
- DLT448-2000-14执行标准与规范
- 基金应知应会专项考试题库(证券类190题)附有答案
- 节流式差压流量计工作原理
- 精神科手卫生与患者关怀
- 2024年江苏省泰州市姜堰区中考二模化学试题(无答案)
- 村办公楼可行性研究报告
- MOOC 知识创新与学术规范-南京大学 中国大学慕课答案
- MOOC 企业文化与商业伦理-东北大学 中国大学慕课答案
- 高考物理二轮复习课件力学三大观点在电磁感应中的应用
- (2024年)小学体育篮球规则课件
评论
0/150
提交评论