




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省长丰二中数学高一下期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是连续的偶函数,且时,是单调函数,则满足的所有之积为()A. B. C. D.2.如果直线a平行于平面,则()A.平面内有且只有一直线与a平行B.平面内有无数条直线与a平行C.平面内不存在与a平行的直线D.平面内的任意直线与直线a都平行3.若扇形的面积为、半径为1,则扇形的圆心角为()A. B. C. D.4.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.直线的倾斜角大小()A. B. C. D.6.已知集合A={x∈N|0≤x≤3},B={x∈R|-2<x<2}则A∩B()A.{0,1} B.{1} C.[0,1] D.[0,2)7.如图,圆的半径为1,是圆上的定点,是圆上的动点,角的始边为射线,终边为射线,过点作直线的垂线,垂足为,将点到直线的距离表示成的函数,则在上的图象大致为()A. B.C. D.8.把十进制数化为二进制数为A. B.C. D.9.集合,则()A. B. C. D.10.在中,角均为锐角,且,则的形状是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形二、填空题:本大题共6小题,每小题5分,共30分。11.计算:__________.12.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率为________.13.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________14.已知函数的部分图象如图所示,则_______.15.已知正实数x,y满足2x+y=2,则xy的最大值为______.16.在数列中,若,(),则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.随着中国经济的加速腾飞,现在手有余钱的中国家庭数量越来越多,在房价居高不下、股市动荡不定的形势下,为了让自己的财富不缩水,很多家庭选择了投资理财.为了了解居民购买理财产品的情况,理财公司抽样调查了该市2018年10户家庭的年收入和年购买理财产品支出的情况,统计资料如下表:年收入x(万元)204040606060707080100年理财产品支出y(万元)9141620211918212223(1)由该样本的散点图可知y与x具有线性相关关系,请求出回归方程;(求时利用的准确值,,的最终结果精确到0.01)(2)若某家庭年收入为120万元,预测某年购买理财产品的支出.(参考数据:,,,)18.已知方程,.(1)若是它的一个根,求的值;(2)若,求满足方程的所有虚数的和.19.如图所示,已知三棱锥的侧棱长都为1,底面ABC是边长为的正三角形.(1)求三棱锥的表面积;(2)求三棱锥的体积.20.已知为等差数列,且,.求的通项公式;若等比数列满足,,求的前n项和公式.21.已知直线和.(1)若与互相垂直,求实数的值;(2)若与互相平行,求与与间的距离,
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
由y=f(x+2)为偶函数分析可得f(x)关于直线x=2对称,进而分析可得函数f(x)在(2,+∞)和(﹣∞,2)上都是单调函数,据此可得若f(x)=f(1),则有x=1或4﹣x=1,变形为二次方程,结合根与系数的关系分析可得满足f(x)=f(1)的所有x之积,即可得答案.【详解】根据题意,函数y=f(x+2)为偶函数,则函数f(x)关于直线x=2对称,又由当x>2时,函数y=f(x)是单调函数,则其在(﹣∞,2)上也是单调函数,若f(x)=f(1),则有x=1或4﹣x=1,当x=1时,变形可得x2+3x﹣3=0,有2个根,且两根之积为﹣3,当4﹣x=1时,变形可得x2+x﹣13=0,有2个根,且两根之积为﹣13,则满足f(x)=f(1)的所有x之积为(﹣3)×(﹣13)=39;故选:D.【点睛】本题考查抽象函数的应用,涉及函数的对称性与单调性的综合应用,属于综合题.2、B【解析】
根据线面平行的性质解答本题.【详解】根据线面平行的性质定理,已知直线平面.
对于A,根据线面平行的性质定理,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故A错误;
对于B,只要过直线a的平面与平面相交得到的交线,都与直线a平行;所以平面内有无数条直线与a平行;故B正确;
对于C,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,所以C错误;
对于D,根据线面平行的性质,过直线a的平面与平面相交得到的交线,则直线,则在平面内与直线相交的直线与a不平行,所以D错误;
故选:B.【点睛】本题考查了线面平行的性质定理;如果直线与平面平行,那么过直线的平面与已知平面相交,直线与交线平行.3、B【解析】设扇形的圆心角为α,则∵扇形的面积为,半径为1,
∴故选B4、C【解析】
根据点的位置,得到不等式组,进行判断角的终边落在的位置.【详解】点在第二象限在第三象限,故本题选C.【点睛】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键.5、B【解析】
化简得到,根据计算得到答案.【详解】直线,即,,,故.故选:.【点睛】本题考查了直线的倾斜角,意在考查学生的计算能力.6、A【解析】
可解出集合A,然后进行交集的运算即可.【详解】A={0,1,2,3},B={x∈R|﹣2<x<2};∴A∩B={0,1}.故选:A.【点睛】本题考查交集的运算,是基础题,注意A中x∈N7、B【解析】
计算函数的表达式,对比图像得到答案.【详解】根据题意知:到直线的距离为:对应图像为B故答案选B【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.8、C【解析】选C.9、C【解析】
先求解不等式化简集合A和B,再根据集合的交集运算求得结果即可.【详解】因为集合,集合或,所以.故本题正确答案为C.【点睛】本题考查一元二次不等式,分式不等式的解法和集合的交集运算,注意认真计算,仔细检查,属基础题.10、C【解析】,又角均为锐角,则,,且中,,的形状是钝角三角形,故选C.【方法点睛】本题主要考查利用诱导公式、正弦函数的单调性以及判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】
直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.12、0.2【解析】从1,2,3,4,5中任意取两个不同的数共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)10种.其中和为5的有(1,4),(2,3)2种.由古典概型概率公式知所求概率为=.13、①③【解析】
根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.14、【解析】
由图可得,即可求得:,再由图可得:当时,取得最大值,即可列方程,整理得:,解得:(),结合即可得解.【详解】由图可得:,所以,解得:由图可得:当时,取得最大值,即:整理得:,所以()又,所以【点睛】本题主要考查了三角函数图象的性质及观察能力,还考查了转化思想及计算能力,属于中档题.15、【解析】
由基本不等式可得,可求出xy的最大值.【详解】因为,所以,故,当且仅当时,取等号.故答案为.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.16、【解析】
由题意,得到数列表示首项为1,公差为2的等差数列,结合等差数列的通项公式,即可求解.【详解】由题意,数列中,满足,(),即(),所以数列表示首项为1,公差为2的等差数列,所以.故答案为:【点睛】本题主要考查了等差数列的定义和通项公式的应用,其中解答中熟记等差数列的定义,合理利用数列的通项公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)万元【解析】
(1)由题意计算,求出回归系数,写出线性回归方程;(2)利用回归方程计算时的值即可.【详解】(1)由题意,又,所以所以所以线性回归方程为;(2)由(1)知,当时,预测某家庭年收入为120万元时,某年购买理财产品的支出为万元.【点睛】本题考查了线性回归方程的求法与应用问题,是基础题.18、(1);(2)190.【解析】
(1)先设出的代数形式,把代入所给的方程,化简后由实部和虚部对应相等进行求值;(2)由方程由虚根的条件,求出的所有的取值,再由方程虚根成对出现的特点,求出所有虚根之和.【详解】解:(1)设,是的一个根,,,,解得,,,(2)方程有虚根,,解得,,,2,,又虚根是成对出现的,所有的虚根之和为.【点睛】本题是复数的综合题,考查了复数相等条件的应用,方程有虚根的等价条件,以及方程中虚根的特点,属于中档题.19、(1)(2)【解析】
(1)分析得到侧面均为等腰直角三角形,再求每一个面的面积即得解;(2)先证明平面SAB,再求几何体体积.【详解】(1)如图三棱锥的侧棱长为都为1,底面为正三角形且边长为,所以侧面均为等腰直角三角形.又,所以,又,.(2)因为侧棱SB,SA,SC互相垂直,平面SAB,所以平面SAB,.【点睛】本题主要考查线面位置关系的证明,考查面积和体积的计算,意在考查学生对这些知识的理解掌握水平.20、(1);(2).【解析】
设等差数列的公差为d,由已知列关于首项与公差的方程组,求得首项与公差,则的通项公式可求;求出,进一步得到公比,再由等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 尚品宅配全屋定制合同模板
- 肇庆市实验中学高三上学期语文高效课堂教学设计:诗歌鉴赏(学案)
- 新疆司法警官职业学院《少儿趣味田径》2023-2024学年第二学期期末试卷
- 石家庄信息工程职业学院《擒拿与格斗》2023-2024学年第一学期期末试卷
- 连锁酒店股份制投资入股合同
- 咸阳职业技术学院《企业级前端应用开发实践》2023-2024学年第二学期期末试卷
- 江南大学《新媒体与社会变迁》2023-2024学年第二学期期末试卷
- 长江大学《信息论与编码》2023-2024学年第二学期期末试卷
- 辽宁传媒学院《西医儿科学》2023-2024学年第二学期期末试卷
- 开封文化艺术职业学院《计算机辅助模具设计》2023-2024学年第二学期期末试卷
- 高三二诊考试分析报告
- 跨境电商平台的融合与创新
- 骨肿瘤的放射治疗和化学治疗策略
- 区块链技术在数据隐私保护中的应用
- 23《海底世界》 第二课时 公开课一等奖创新教学设计
- DB37-T 4693.1-2024人民防空工程防护设备安装技术规程 第1部分:人防门-地方标准
- 危险化学品、烟花爆竹安全生产执法监察培训课件
- 装饰工程资金需求计划
- 权力与理性-17、18世纪西方美术
- 30题药品质量检测岗位常见面试问题含HR问题考察点及参考回答
- MotionView-MotionSolve应用技巧与实例分析
评论
0/150
提交评论