




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵港市重点中学高三考前热身新高考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(i是虚数单位)在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.一个几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.3.设是虚数单位,,,则()A. B. C.1 D.24.数列满足,且,,则()A. B.9 C. D.75.已知函数f(x)=xex2+axeA.1 B.-1 C.a D.-a6.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立7.已知a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,aβ,bα,则“ab“是“αβ”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.定义域为R的偶函数满足任意,有,且当时,.若函数至少有三个零点,则的取值范围是()A. B. C. D.9.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里11.若为纯虚数,则z=()A. B.6i C. D.2012.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____14.利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是______15.如图所示,直角坐标系中网格小正方形的边长为1,若向量、、满足,则实数的值为_______.16.在中,内角所对的边分别是,若,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某景点上山共有级台阶,寓意长长久久.甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,若甲每步上一个台阶的概率为,每步上两个台阶的概率为.为了简便描述问题,我们约定,甲从级台阶开始向上走,一步走一个台阶记分,一步走两个台阶记分,记甲登上第个台阶的概率为,其中,且.(1)若甲走步时所得分数为,求的分布列和数学期望;(2)证明:数列是等比数列;(3)求甲在登山过程中,恰好登上第级台阶的概率.18.(12分)如图,四棱锥中,平面平面,底面为梯形.,且与均为正三角形.为的中点为重心,与相交于点.(1)求证:平面;(2)求三棱锥的体积.19.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.20.(12分)如图1,四边形为直角梯形,,,,,,为线段上一点,满足,为的中点,现将梯形沿折叠(如图2),使平面平面.(1)求证:平面平面;(2)能否在线段上找到一点(端点除外)使得直线与平面所成角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.21.(12分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.22.(10分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用复数的四则运算以及几何意义即可求解.【详解】解:,则复数(i是虚数单位)在复平面内对应的点的坐标为:,位于第二象限.故选:B.【点睛】本题考查了复数的四则运算以及复数的几何意义,属于基础题.2、A【解析】
根据题意,可得几何体,利用体积计算即可.【详解】由题意,该几何体如图所示:该几何体的体积.故选:A.【点睛】本题考查了常见几何体的三视图和体积计算,属于基础题.3、C【解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【详解】解:,,解得:.故选:C.【点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.4、A【解析】
先由题意可得数列为等差数列,再根据,,可求出公差,即可求出.【详解】数列满足,则数列为等差数列,,,,,,,故选:.【点睛】本题主要考查了等差数列的性质和通项公式的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.5、A【解析】
令xex=t,构造g(x)=xex,要使函数f(x)=xex2+axex-a有三个不同的零点x1,x2,【详解】令xex=t,构造g(x)=xex,求导得g'(x)=故g(x)在-∞,1上单调递增,在1,+∞上单调递减,且x<0时,g(x)<0,x>0时,g(x)>0,g(x)max=g(1)=1e,可画出函数g(x)的图象(见下图),要使函数f(x)=xex2+axex-a有三个不同的零点x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故选A.【点睛】解决函数零点问题,常常利用数形结合、等价转化等数学思想.6、A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.7、D【解析】
根据面面平行的判定及性质求解即可.【详解】解:a⊂α,b⊂β,a∥β,b∥α,由a∥b,不一定有α∥β,α与β可能相交;反之,由α∥β,可得a∥b或a与b异面,∴a,b是两条不同的直线,α,β是两个不同的平面,且a⊂α,b⊂β,a∥β,b∥α,则“a∥b“是“α∥β”的既不充分也不必要条件.故选:D.【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题.8、B【解析】
由题意可得的周期为,当时,,令,则的图像和的图像至少有个交点,画出图像,数形结合,根据,求得的取值范围.【详解】是定义域为R的偶函数,满足任意,,令,又,为周期为的偶函数,当时,,当,当,作出图像,如下图所示:函数至少有三个零点,则的图像和的图像至少有个交点,,若,的图像和的图像只有1个交点,不合题意,所以,的图像和的图像至少有个交点,则有,即,.故选:B.【点睛】本题考查函数周期性及其应用,解题过程中用到了数形结合方法,这也是高考常考的热点问题,属于中档题.9、A【解析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.10、B【解析】
人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,计算,代入得到答案.【详解】由题意可知此人每天走的路程构成公比为的等比数列,设此人第一天走的路程为,则,解得,从而可得,故.故选:.【点睛】本题考查了等比数列的应用,意在考查学生的计算能力和应用能力.11、C【解析】
根据复数的乘法运算以及纯虚数的概念,可得结果.【详解】∵为纯虚数,∴且得,此时故选:C.【点睛】本题考查复数的概念与运算,属基础题.12、B【解析】
根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.14、【解析】
计算正四面体的高,并计算该正四面体的体积,利用等体积法,可得结果.【详解】作平面,为的重心如图则,所以设正四面体内任意一点到四个面的距离之和为则故答案为:【点睛】本题考查类比推理的应用,还考查等体积法,考验理解能力以及计算能力,属基础题.15、【解析】
根据图示分析出、、的坐标表示,然后根据坐标形式下向量的数量积为零计算出的取值.【详解】由图可知:,所以,又因为,所以,所以.故答案为:.【点睛】本题考查向量的坐标表示以及坐标形式下向量的数量积运算,难度较易.已知,若,则有.16、【解析】
先求得的值,由此求得的值,再利用正弦定理求得的值.【详解】由于,所以,所以.由正弦定理得.故答案为:【点睛】本小题主要考查正弦定理解三角形,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查三角形的内角和定理,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)由题可得的所有可能取值为,,,,且,,,,所以的分布列为所以的数学期望.(2)由题可得,所以,又,,所以,所以是以为首项,为公比的等比数列.(3)由(2)可得.18、(1)见解析(2)【解析】
(1)第(1)问,连交于,连接.证明//,即证平面.(2)第(2)问,主要是利用体积变换,,求得三棱锥的体积.【详解】(1)方法一:连交于,连接.由梯形,且,知又为的中点,为的重心,∴在中,,故//.又平面,平面,∴平面.方法二:过作交PD于N,过F作FM||AD交CD于M,连接MN,G为△PAD的重心,又ABCD为梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF为平行四边形.因为GF||MN,(2)方法一:由平面平面,与均为正三角形,为的中点∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又为正三角形,得,∴,得∴三棱锥的体积为.方法二:由平面平面,与均为正三角形,为的中点∴,,得平面,且由,∴而又为正三角形,得,得.∴,∴三棱锥的体积为.19、(1)(2)证明见解析【解析】
(1)利用求得数列的通项公式.(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.【详解】(1)∵,令,得.又,两式相减,得.∴.(2)∵.又∵,,∴.∴.∴.【点睛】本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.20、(1)证明见解析;(2)存在点是线段的中点,使得直线与平面所成角的正弦值为.【解析】
(1)在直角梯形中,根据,,得为等边三角形,再由余弦定理求得,满足,得到,再根据平面平面,利用面面垂直的性质定理证明.(2)建立空间直角坐标系:假设在上存在一点使直线与平面所成角的正弦值为,且,,求得平面的一个法向量,再利用线面角公式求解.【详解】(1)证明:在直角梯形中,,,因此为等边三角形,从而,又,由余弦定理得:,∴,即,且折叠后与位置关系不变,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵为等边三角形,为的中点,∴,又∵平面平面,且平面平面,∴平面,取的中点,连结,则,从而,以为坐标原点建立如图所示的空间直角坐标系:则,,则,假设在上存在一点使直线与平面所成角的正弦值为,且,,∵,∴,故,∴,又,该平面的法向量为,,令得,∴,解得或(舍),综上可知,存在点是线段的中点,使得直线与平面所成角的正弦值为.【点睛】本题主要考查面面垂直的性质定理和向量法研究线面角问题,还考查了转化化归的思想和运算求解的能力,属于中档题.21、(1);(2)见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供销保价合同范本
- 农村临时建房承包合同范本
- 书画采购合同范本
- 出版合同范本填写
- 书赠与合同范本
- 农庄装修合同范本
- 出资借款合同范本
- 分体机空调保养合同范本
- 企业合作运营合同范本
- 产品收款合同范本
- 2025年临床医师定期考核必考复习题库及答案(1080题)
- 电梯维保知识培训课件
- 山东省海洋知识竞赛(初中组)考试题及答案
- 幼儿园艺术领域活动设计
- 人教版四年级下册数学全册教案含反思
- 现场物资安全管理
- 雾化吸入技术教学课件
- 上海市宝山区2024-2025学年高三一模英语试卷(含答案)
- 2023年会计基础各章节习题及答案
- 《中小学教师人工智能素养框架与实践路径研究》专题讲座
- 2024年神农架林区林投集团招聘工作人员6名管理单位遴选500模拟题附带答案详解
评论
0/150
提交评论