版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.2.某地区教育主管部门为了对该地区模拟考试成进行分析,随机抽取了200分到450分之间的2000名学生的成绩,并根据这2000名学生的成绩画出样本的频率分布直方图,如图所示,则成绩在,内的学生人数为()A.800 B.1000 C.1200 D.16003.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A.12种 B.18种 C.24种 D.64种4.若满足约束条件则的最大值为()A.10 B.8 C.5 D.35.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.6.若为虚数单位,网格纸上小正方形的边长为1,图中复平面内点表示复数,则表示复数的点是()A.E B.F C.G D.H7.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.8.已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为()A. B. C. D.9.A. B. C. D.10.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.11.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金()A.多1斤 B.少1斤 C.多斤 D.少斤12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________.14.为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为__________.15.平面向量与的夹角为,,,则__________.16.某学校高一、高二、高三年级的学生人数之比为,现按年级采用分层抽样的方法抽取若干人,若抽取的高三年级为12人,则抽取的样本容量为________人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.18.(12分)设前项积为的数列,(为常数),且是等差数列.(I)求的值及数列的通项公式;(Ⅱ)设是数列的前项和,且,求的最小值.19.(12分)已知函数.(1)求函数的单调区间;(2)若,证明.20.(12分)如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,,.(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值.21.(12分)已知函数.(1)解不等式;(2)若函数的最小值为,求的最小值.22.(10分)如图,三棱台中,侧面与侧面是全等的梯形,若,且.(Ⅰ)若,,证明:∥平面;(Ⅱ)若二面角为,求平面与平面所成的锐二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,
,
当且仅当三点共线时,取“=”号,∴的最小值为.
故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.2、B【解析】
由图可列方程算得a,然后求出成绩在内的频率,最后根据频数=总数×频率可以求得成绩在内的学生人数.【详解】由频率和为1,得,解得,所以成绩在内的频率,所以成绩在内的学生人数.故选:B【点睛】本题主要考查频率直方图的应用,属基础题.3、C【解析】
根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.【详解】解:根据题意,分2步进行分析:①,将4人分成3组,有种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有种情况,此时有种情况,则有种不同的安排方法;故选:C.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.4、D【解析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.5、C【解析】
求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C【点睛】本题主要考查了求双曲线的方程,属于中档题.6、C【解析】
由于在复平面内点的坐标为,所以,然后将代入化简后可找到其对应的点.【详解】由,所以,对应点.故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题.7、D【解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.8、D【解析】
设,,作为一个基底,表示向量,,,然后再用数量积公式求解.【详解】设,,所以,,,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.9、A【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题.10、C【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.11、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列则由等差数列的性质得,故选C12、C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.14、100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数.详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,∴样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误.15、【解析】
由平面向量模的计算公式,直接计算即可.【详解】因为平面向量与的夹角为,所以,所以;故答案为【点睛】本题主要考查平面向量模的计算,只需先求出向量的数量积,进而即可求出结果,属于基础题型.16、【解析】
根据分层抽样的定义建立比例关系即可得到结论.【详解】设抽取的样本为,则由题意得,解得.故答案为:【点睛】本题考查了分层抽样的知识,算出抽样比是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)定值为0.【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.18、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)当时,由,得到,两边同除以,得到.再根据是等差数列.求解.(Ⅱ),根据前n项和的定义得到,令,研究其增减性即可.【详解】(Ⅰ)当时,,所以,即,所以.因为是等差数列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以数列是递增数列,所以,即.【点睛】本题主要考查等差数列的定义,前n项和以及数列的增减性,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(1)单调递减区间为,,无单调递增区间(2)证明见解析【解析】
(1)求导,根据导数的正负判断单调性,(2)整理,化简为,令,求的单调性,以及,即证.【详解】解:(1)函数定义域为,则,令,,则,当,,单调递减;当,,单调递增;故,,,,故函数的单调递减区间为,,无单调递增区间.(2)证明,即为,因为,即证,令,则,令,则,当时,,所以在上单调递减,则,,则在上恒成立,所以在上单调递减,所以要证原不等式成立,只需证当时,,令,,,可知对于恒成立,即,即,故,即证,故原不等式得证.【点睛】本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题.20、(1)见解析(2),最大值.【解析】
(1)先证明,,故平面ADC.由,即得证;(2)可证明平面ABC,结合条件表示出,利用均值不等式,即得解.【详解】(1)证明:∵四边形DCBE为平行四边形,∴,.∵平面ABC,平面ABC,∴.∵AB是圆O的直径,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,当且仅当,即时取等号,∴当时,体积有最大值.【点睛】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划归,数学运算的能力,属于中档题.21、(1)(2)【解析】
(1)用分类讨论思想去掉绝对值符号后可解不等式;(2)由(1)得的最小值为4,则由,代换后用基本不等式可得最小值.【详解】解:(1)讨论:当时,,即,此时无解;当时,;当时,.所求不等式的解集为(2)分析知,函数的最小值为4,当且仅当时等号成立.的最小值为4.【点睛】本题考查解绝对值不等式,考查用基本不等式求最小值.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年艺术院校服装租赁服务合同3篇
- 2025年仁爱科普版九年级地理下册阶段测试试卷
- 部编版八年级语文上册 第三单元课外古诗词诵读《庭中有奇树》-教学设计
- 2025年上外版四年级语文下册阶段测试试卷
- 二零二五版光伏发电厂房买卖合同范本3篇
- 2025年沪教新版九年级地理上册月考试卷含答案
- 2025年人教新起点八年级化学上册月考试卷
- 2025年仓储信息化租赁合同3篇
- 2024年汽车消费贷款合同范本3篇
- 二零二五年度高科技企业部分股权转让及知识产权转移协议3篇
- 2024春期国开电大专科《中国古代文化常识》在线形考(形考任务一至四)试题及答案
- GB/T 17937-2024电工用铝包钢线
- 广告宣传物料广告宣传物料配送方案
- 2024年长春医学高等专科学校单招职业适应性测试题库及答案解析
- 解析几何-2023上海市高三数学一模汇编【教师版】
- 项目维修维保方案
- 上海市浦东新区2023-2024学年一年级上学期期末考试数学试题
- 插图在小学英语口语教学中的运用
- 前列腺增生药物治疗
- 人工智能知识图谱(归纳导图)
- 滴滴补贴方案
评论
0/150
提交评论