版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市第七中学2025届数学高一下期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过两点A,B(,的直线倾斜角是,则的值是()A.B.3C.1D.2.在中,内角,,的对边分别为,,.若,则的形状是A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定3.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.564.已知数列的前项和(),那么()A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列5.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.6.等差数列,,,则此数列前项和等于().A. B. C. D.7.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.8.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.9.已知奇函数满足,则的取值不可能是()A.2 B.4 C.6 D.1010.若,,则方程有实数根的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________12.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为__.13.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.14.若,则______(用表示).15.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.16.若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量且,(1)求向量与的夹角;(2)求的值.18.如图,在四棱锥中,底面是矩形,平面,,.(1)求直线与平面所成角的正弦值;(2)若点分别在上,且平面,试确定点的位置19.(1)己知直线,求与直线l平行且到直线l距离为2的直线方程;(2)若关于x的不等式的解集是的子集,求实数a的取值范围.20.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.21.已知向量,,且.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:根据直线斜率的计算式有,解得.考点:直线斜率的计算式.2、C【解析】
由正弦定理可推得,再由余弦定理计算最大边的余弦值即可判断三角形形状.【详解】因为,所以,设,,,则角为的最大角,由余弦定理可得,即,故是钝角三角形.【点睛】本题考查用正弦定理和余弦定理解三角形,属于基础题.3、C【解析】
利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.4、C【解析】试题分析:当时,,,∴数列是等差数列.当时,,∴数列是等比数列.综上所述,数列或是等差数列或是等比数列考点:等差数列等比数列的判定5、B【解析】
先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.6、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故选D7、B【解析】
根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.8、B【解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.9、B【解析】
由三角函数的奇偶性和对称性可求得参数的值.【详解】由是奇函数得又因为得关于对称,所以,解得所以当时,得A答案;当时,得C答案;当时,得D答案;故选B.【点睛】本题考查三角函数的奇偶性和对称性,属于基础题.10、B【解析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.12、【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和.∴数列的前项的和为.故答案为.考点:(1)数列递推式;(2)数列求和.13、【解析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.14、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.15、【解析】
根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.16、【解析】
,则,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.18、(1);(2)M为AB的中点,N为PC的中点【解析】
(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立空间直角坐标系,求平面PCD的一个法向量为,由空间向量的线面角公式求解即可;(2)设,利用平面PCD,所以∥,得到的方程,求解即可确定M,N的位置【详解】(1)由题意知,AB,AD,AP两两垂直.以为正交基底,建立如图所示的空间直角坐标系,则从而设平面PCD的法向量则即不妨取则.所以平面PCD的一个法向量为.设直线PB与平面PCD所成角为所以即直线PB与平面PCD所成角的正弦值为.(2)设则设则而所以.由(1)知,平面PCD的一个法向量为,因为平面PCD,所以∥.所以解得,.所以M为AB的中点,N为PC的中点.【点睛】本题考查空间向量的应用,求线面角,探索性问题求点位置,熟练掌握空间向量的运算是关键,是基础题19、(1)或;(2)【解析】
(1)根据两直线平行,设所求直线为,利用两平行线间的距离公式,求出的值,从而得到答案;(2)解一元二次不等式,然后按,,进行分类讨论,得到答案.【详解】(1)设与直线平行的直线方程为,所以两平行线间的距离为,解得或,所以所求直线方程为或.(2)解关于x的不等式,可化为,①当时候,解集为,要使是的子集,所以,所以得到,②当时,解集为,满足解集是的子集,符合题意,③当时,解集为,此时解集不是的子集,不符合题意.综上所述,的取值范围为.【点睛】本题考查根据平行求直线方程,根据平行线间的距离求参数,根据集合的包含关系求参数的范围,属于中档题.20、(1);(2).【解析】
(1)由正弦定理化边为角,再由同角间的三角函数关系化简可求得;(2)利用余弦定理得出的等式,由基本不等式求得的最大值,可得面积最大值.【详解】(1)∵,∴,又,∴,即,∴;(2)由(1),∴,当且仅当时等号成立.∴,,最大值为.【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《综合布线结构图》课件
- 小学数学一年级上册 三1-5的认识和加减法 第四节 几和几 教案
- 湖南省株洲市2025届高三上学期教学质量统一检测化学答案
- 高考新课标语文模拟试卷系列之60
- 《办公室的设计》课件
- 娱乐服务员工作总结
- 驾驶培训车辆租赁合同三篇
- 服装行业采购经验分享
- 教育行业校园安全预案编制
- 信息安全行业技术岗位总结
- 公交车站台服务规范与安全意识
- 2024电商消费趋势年度报告-flywheel飞未-202412
- 慢阻肺护理个案病例范文
- 《农机安全》课件
- 公共厕所清洁保养协议
- 浙江省温州市2023-2024学年六年级上学期期末科学试卷(含答案)3
- 深圳大学《激光原理与技术》2023-2024学年第一学期期末试卷
- 西安市高新第一中学八年级上册地理期末试卷(含答案)
- 2024年广东省深圳市中考英语适应性试卷
- 普法学法知识考试题库(100题附答案)
- DB37-T 1722-2024公路工程高性能沥青混合料施工技术规范
评论
0/150
提交评论