版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西桂林市全州县二中2025届高一数学第二学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是()A.2 B.3 C.4 D.12.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位3.已知一个平面,那么对于空间内的任意一条直线,在平面内一定存在一条直线,使得与()A.平行B.相交C.异面D.垂直4.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°5.若,则()A. B. C. D.6.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.17.已知数列,满足,若,则()A. B. C. D.8.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样9.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.10.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,,,,则______.12.若则____________13.在各项均为正数的等比数列中,,,则___________.14.从原点向直线作垂线,垂足为点,则的方程为_______.15.已知,,,若,则__________.16.在三棱锥P-ABC中,平面PAB⊥平面ABC,ΔABC是边长为23的等边三角形,其中PA=PB=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直四棱柱中,底面为菱形,为中点.(1)求证:平面;(2)求证:.18.如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;19.已知集合,,求.20.已知数列的前项和为,且.(1)求;(2)若,求数列的前项和.21.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,,,求的值.因为,解得,,解得.故选B.【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.2、D【解析】
根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题3、D【解析】略4、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C5、D【解析】.分子分母同时除以,即得:.故选D.6、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m7、C【解析】
利用递推公式计算出数列的前几项,找出数列的周期,然后利用周期性求出的值.【详解】,且,,,,所以,,则数列是以为周期的周期数列,.故选:C.【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.8、C【解析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.9、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、C【解析】
根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.12、【解析】因为,所以=.故填.13、8【解析】
根据题中数列,结合等比数列的性质,得到,即可得出结果.【详解】因为数列为各项均为正数的等比数列,,,所以.故答案为【点睛】本题主要考查等比数列的性质的应用,熟记等比数列的性质即可,属于基础题型.14、.【解析】
先求得直线的斜率,由直线垂直时的斜率关系可求得直线的斜率.再根据点斜式即可求得直线的方程.【详解】从原点向直线作垂线,垂足为点则直线的斜率由两条垂直直线的斜率关系可知根据点斜式可得直线的方程为化简得故答案为:【点睛】本题考查了直线垂直时的斜率关系,点斜式方程的应用,属于基础题.15、-3【解析】由可知,解得,16、65π【解析】
本题首先可以通过题意画出图像,然后通过三棱锥的图像性质以及三棱锥的外接球的相关性质来确定圆心的位置,最后根据各边所满足的几何关系列出算式,即可得出结果。【详解】如图所示,作AB中点D,连接PD、CD,在CD上作三角形ABC的中心E,过点E作平面ABC的垂线,在垂线上取一点O,使得PO=OC。因为三棱锥底面是一个边长为23的等边三角形,E所以三棱锥的外接球的球心在过点E的平面ABC的垂线上,因为PO=OC,P、C两点在三棱锥的外接球的球面上,所以O点即为球心,因为平面PAB⊥平面ABC,PA=PB,D为AB中点,所以PD⊥平面ABCCD=CA2-ADPD=P设球的半径为r,则有PO=OC=r,OE=r(PD-OE)2+DE2=P故表面积为S=4πr【点睛】本题考查三棱锥的相关性质,主要考查三棱锥的外接球的相关性质,考查如何通过三棱锥的几何特征来确定三棱锥的外接球与半径,考查推理能力,考查化归与转化思想,是难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)连接与与交于点,在利用中位线证明平行.(2)首先证明平面,由于平面,证明得到结论.【详解】证明:(1)连接与交于点,连接因为底面为菱形,所以为中点因为为中点,所以平面,平面,所以平面(2)在直四棱柱中,平面,平面所以因为底面为菱形,所以所以,,,平面,平面所以平面因为平面,所以【点睛】本题考查直棱柱得概念和性质,考查线面平行的判定定理,考查线面垂直的判定定理,考查了学生的逻辑能力和书写能力,属于简单题18、(1)见解析;(2)见解析;【解析】
(1)要证BD⊥平面PAC,只需在平面PAC上找到两条直线跟BD垂直即证,显然,从平面中可证,即证.(2)要证明平面PAB⊥平面PAE,可证平面即可.【详解】(1)证明:因为平面,所以;因为底面是菱形,所以;因为,平面,所以平面.(2)证明:因为底面是菱形且,所以为正三角形,所以,因为,所以;因为平面,平面,所以;因为所以平面,平面,所以平面平面.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.19、【解析】
根据集合A,B的意义,求出集合A,B,再根据交集的运算求得结果即可.【详解】对于集合A,,对于集合B,当x<1时,故B=;故A∩B=故答案为【点睛】本题考查了交集的运算,准确计算集合A,B是关键,是基础题.20、(1);(2).【解析】
(1)利用与的关系可得,再利用等差数列的通项公式即可求解.(2)由(1)求出,再利用裂项求和法即可求解.【详解】解:(1)因为,①所以当时,,又,故.当时,,②①②得,,整理得.因为,所以,所以是以为首项,以1为公差的等差数列.所以,即.(2)由(1)及得,,所以.【点睛】本小题考查与的关系、等差数列的定义及通项公式、数列求和等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、分类与整合思想等.21、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能语音外呼系统项目管理与协调合同3篇
- 2025年度住宅小区消防设备设施定期检测与评估合同2篇
- 2024版个人最简单的租房合同范本
- 2025年度创意手提箱定制与销售合同范本3篇
- 2025年度智能化LED广告车租赁服务合同3篇
- 2025年体育场地租赁合同标准模板(含赛事设备)3篇
- 2024年版:计算机软件开发及技术服务合同
- 2024年高效节能家电购销合同3篇
- 2024年物联网技术在智能农业应用研发合同
- 2025版5G通信股权收益权转让与网络建设合同3篇
- 运输公司安全生产隐患排查制度
- 译林新版(2024)七年级英语上册Unit 5 Reading课件
- 爆破设计说明书(修改)
- 2025届天津市南开区南开中学语文高三上期末达标检测试题含解析
- 期末试卷(试题)-2024-2025学年四年级上册数学沪教版
- 光伏电站运维详细版手册
- 艺术学概论第一章-彭吉象
- 51job在线测评题集
- 2024新教科版一年级科学上册全册教案
- 2024儿童身高现状报告
- 趣味知识问答100道
评论
0/150
提交评论