甘肃省兰州市第四中学2025届数学高一下期末复习检测试题含解析_第1页
甘肃省兰州市第四中学2025届数学高一下期末复习检测试题含解析_第2页
甘肃省兰州市第四中学2025届数学高一下期末复习检测试题含解析_第3页
甘肃省兰州市第四中学2025届数学高一下期末复习检测试题含解析_第4页
甘肃省兰州市第四中学2025届数学高一下期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市第四中学2025届数学高一下期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.各项均为实数的等比数列{an}前n项之和记为,若,,则等于A.150 B.-200 C.150或-200 D.-50或4002.在中,角的对边分别为,,且边,则面积的最大值为()A. B. C. D.3.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,4.已知角的终边过点,则()A. B. C. D.5.某几何体三视图如图所示,则该几何体中的棱与面相互平行的有()A.2对 B.3对 C.4对 D.5对6.已知集,集合,则A.(-2,-1) B.(-1,0) C.(0,2) D.(-1,2)7.如果直线l过点(2,1),且在y轴上的截距的取值范围为(﹣1,2),那么l的斜率k的取值范围是()A.(,1) B.(﹣1,1)C.(﹣∞,)∪(1,+∞) D.(﹣∞,﹣1)∪(1,+∞)8.已知二次函数,当时,其抛物线在轴上截得线段长依次为,则的值是A.1 B.2 C.3 D.49.书架上有2本数学书和2本语文书,从这4本书中任取2本,那么互斥但不对立的两个事件是()A.“至少有1本数学书”和“都是语文书”B.“至少有1本数学书”和“至多有1本语文书”C.“恰有1本数学书”和“恰有2本数学书”D.“至多有1本数学书”和“都是语文书”10.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.12.若,则_______.13.中,,,,则________.14.已知满足约束条件,则的最大值为__________.15.已知a,b为常数,若,则______;16.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,可知其概率平分别为.(1)求1张奖券中奖的概率;(2)求1张奖券不中特等奖且不中一等奖的概率.18.已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.19.在中,三个内角所对的边分别为,满足.(1)求角的大小;(2)若,求,的值.(其中)20.已知函数.(1)求函数的最小正周期;(2)求函数的最小值及相应的值.21.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据等比数列的前n项和公式化简S10=10,S30=70,分别求得关于q的两个关系式,可求得公比q的10次方的值,再利用前n项和公式计算S40即可.【详解】因为{an}是等比数列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案选A.【点睛】此题考查学生灵活运用等比数列的前n项和的公式化简求值,是一道综合题,有一定的运算技巧,需学生在练习中慢慢培养.2、D【解析】

由已知利用同角三角函数基本关系式可求,根据余弦定理,基本不等式可求的最大值,进而利用三角形面积公式即可求解.【详解】解:,可解得:,由余弦定理,可得,即,当且仅当时成立.等号当时成立.故选D.【点睛】本题主要考查了余弦定理,三角形面积公式的应用,属于基本知识的考查.3、A【解析】

根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。4、D【解析】

首先根据三角函数的定义,求得,之后应用三角函数的诱导公式,化简求得结果.【详解】由已知得,则.故选D【点睛】该题考查的是有关三角函数的化简求值问题,涉及到的知识点有三角函数的定义,诱导公式,属于简单题目.5、C【解析】

本道题结合三视图,还原直观图,结合直线与平面判定,即可。【详解】结合三视图,还原直观图,得到AB平行平面OCD,DC平行平面OBA,BC平行平面ODA,DA平行平面OBC,故有4对。故选C。【点睛】本道题考查了三视图还原直观图,难度中等。6、D【解析】

根据函数的单调性解不等式,再解绝对值不等式,最后根据交集的定义求解.【详解】由得,由得,所以,故选D.【点睛】本题考查指数不等式和绝对值不等式的解法,集合的交集.指数不等式要根据指数函数的单调性求解.7、A【解析】

利用直线的斜率公式,求出当直线经过点时,直线经过点时的斜率,即可得到结论.【详解】设要求直线的斜率为,当直线经过点时,斜率为,当直线经过点时,斜率为,故所求直线的斜率为.故选:A.【点睛】本题主要考查直线的斜率公式,属于基础题.8、A【解析】

当时,,运用韦达定理得,运用裂项相消求和可得由此能求出【详解】当时,,由,可得,,由,.故选:A.【点睛】本题主要考查了函数的极限的运算,裂项相消求和,根与系数的关系,属于中档题.9、C【解析】

两个事件互斥但不对立指的是这两个事件不能同时发生,也可以都不发生,逐一判断即可【详解】对于A:“至少有1本数学书”和“都是语文书”是对立事件,故不满足题意对于B:“至少有1本数学书”和“至多有1本语文书”可以同时发生,故不满足题意对于C:“恰有1本数学书”和“恰有2本数学书”互斥但不对立,满足题意对于D:“至多有1本数学书”和“都是语文书”可以同时发生,故不满足题意故选:C【点睛】本题考查互斥而不对立的两个事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.10、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.12、【解析】

对两边平方整理即可得解.【详解】由可得:,整理得:所以【点睛】本题主要考查了同角三角函数基本关系及二倍角的正弦公式,考查观察能力及转化能力,属于较易题.13、7【解析】

在中,利用余弦定理得到,即可求解,得到答案.【详解】由余弦定理可得,解得.故答案为:7.【点睛】本题主要考查了余弦定理的应用,其中解答中熟记三角形的余弦定理,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.14、57【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.15、2【解析】

根据极限存在首先判断出的值,然后根据极限的值计算出的值,由此可计算出的值.【详解】因为,所以,又因为,所以,所以.故答案为:.【点睛】本题考查根据极限的值求解参数,难度较易.16、【解析】

由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)1张奖券中奖包括中特等奖、一等奖、二等奖,且、、两两互斥,利用互斥事件的概率加法公式求解即可;(2)“1张奖券不中特等奖且不中一等奖”的对立事件为“1张奖券中特等奖或中一等奖”,则利用互斥事件的概率公式求解即可【详解】(1)1张奖券中奖包括中特等奖、一等奖、二等奖,设“1张奖券中奖”为事件,则,因为、、两两互斥,所以故1张奖券中奖的概率为(2)设“1张奖券不中特等奖且不中一等奖”为事件,则事件与“1张奖券中特等奖或中一等奖”为对立事件,所以,故1张奖券不中特等奖且不中一等奖的概率为【点睛】本题考查互斥事件的概率加法公式的应用,考查古典概型,考查利用对立事件求概率18、(1)见解析;(2),.【解析】

(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果.【详解】(1)由题意可知,,,,所以,即,所以数列是首项为、公比为的等比数列,,因为,所以,数列是首项、公差为的等差数列,.(2)由(1)可知,,,所以,.【点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.19、(1);(2)4,6【解析】

(1)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,求出的值,即可确定出的度数;(2)根据平面向量数量积的运算法则计算得到一个等式,记作①,把的度数代入求出的值,记作②,然后利用余弦定理表示出,把及的值代入求出的值,利用完全平方公式表示出,把相应的值代入,开方求出的值,由②③可知与为一个一元二次方程的两个解,求出方程的解,根据大于,可得出,的值.【详解】(1)已知等式,利用正弦定理化简得,整理得,即,,则.(2)由,得,①又由(1),②由余弦定理得,将及①代入得,,,③由②③可知与为一个一元二次方程的两个根,解此方程,并由大于,可得.【点睛】以三角形和平面向量为载体,三角恒等变换为手段,正弦定理、余弦定理为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)的最小值为,此时.【解析】

通过倍角公式,把化成标准形式,研究函数的相关性质(周期性,单调性,奇偶性,对称性,最值及最值相对于的变量),从而本题能顺利完成【详解】(1)因为.所以函数的最小正周期为.(2)当时,,此时,,,所以的最小值为,此时.【点睛】该类型考题关键是将化成性质,只有这样,我们才能很好的去研究他的性质.21、(Ⅰ)见解析(Ⅱ)【解析】试题分析:(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论