云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题含解析_第1页
云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题含解析_第2页
云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题含解析_第3页
云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题含解析_第4页
云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昭通市盐津县一中2025届数学高一下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数y=sin(2x+)的图象,只需将函数y=sin2x图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度2.已知等比数列满足,,则()A. B. C. D.3.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形4.已知角的终边上一点,且,则()A. B. C. D.5.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a46.关于的不等式对一切实数都成立,则的取值范围是()A. B. C. D.7.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.8.已知过点的直线的倾斜角为,则直线的方程为()A. B. C. D.9.在平面直角坐标系中,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,则的值为()A. B. C. D.10.在平行四边形中,,,则点的坐标为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).12.已知,,且,若恒成立,则实数的取值范围是____.13.英国物理学家和数学家艾萨克·牛顿(Isaacnewton,1643-1727年)曾提出了物体在常温环境下温度变化的冷却模型.现把一杯温水放在空气中冷却,假设这杯水从开始冷却,x分钟后物体的温度满足:(其中…为自然对数的底数).则从开始冷却,经过5分钟时间这杯水的温度是________(单位:℃).14.在△ABC中,已知30,则B等于__________.15.已知数列的通项公式为,若数列为单调递增数列,则实数的取值范围是______.16.已知,为第二象限角,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,,求的值.18.已知等差数列满足,.(1)求的通项公式;(2)设等比数列满足.若,求的值.19.在中,角,,所对的边分别为,,,.(1)求角的大小;(2)若,的面积为,求及的值.20.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.21.已知数列满足,.(1)若,求证:数列为等比数列.(2)若,求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】∵,故要得到的图象,只需将函数y=sin2x,x∈R的图象向左平移个单位长度即可,故选:A.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.2、C【解析】试题分析:由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.3、A【解析】

将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.4、B【解析】

由角的终边上一点得,根据条件解出即可【详解】由角的终边上一点得所以解得故选:B【点睛】本题考查的是三角函数的定义,较简单.5、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.6、D【解析】

特值,利用排除法求解即可.【详解】因为当时,满足题意,所以可排除选项B、C、A,故选D【点睛】不等式恒成立问题有两个思路:求最值,说明恒成立参变分离,再求最值。7、A【解析】

由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。8、B【解析】

由直线的倾斜角求得直线的斜率,再由直线的点斜式方程求解.【详解】∵直线的倾斜角为,∵直线的斜率,又直线过点,由直线方程的点斜式可得直线的方程为,即.故选:B.【点睛】本题考查直线的点斜式方程,考查直线的倾斜角与斜率的关系,是基础题.9、C【解析】

根据三角函数的定义,即可求解,得到答案.【详解】由题意,角的顶点与原点重合,它的始边与轴的非负半轴重合,终边交单位圆于点,根据三角函数的定义可得.故选:C.【点睛】本题主要考查了三角的函数的定义,其中解答中熟记三角函数的定义是解答的关键,着重考查了推理与计算能力,属于基础题.10、A【解析】

先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】

结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.12、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值13、45【解析】

直接利用对数的运算性质计算即可,【详解】.故答案为:45.【点睛】本题考查对数的运算性质,考查计算能力,属于基础题.14、【解析】

根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.15、【解析】

根据题意得到,推出,恒成立,求出的最大值,即可得出结果.【详解】因为数列的通项公式为,且数列为单调递增数列,所以,即,所以,恒成立,因此即可,又随的增大而减小,所以,因此实数的取值范围是.故答案为:【点睛】本题主要考查由数列的单调性求参数,熟记递增数列的特点即可,属于常考题型.16、【解析】

先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

根据角的范围结合条件可求出,的值,然后求出的值,再由二倍角公式可求解.【详解】由,,得.又,则.由,,得.所以又所以【点睛】本题考查两角和与差的三角函数公式和同角三角函数关系以及二倍角公式,考察角变换的应用,属于中档题.18、(1);(2)63【解析】

(1)求出公差和首项,可得通项公式;(2)由得公比,再得,结合通项公式求得.【详解】(1)由题意等差数列的公差,,,∴;(2)由(1),∴,,∴,.【点睛】本题考查等差数列与等比数列的通项公式,掌握基本量法是解题基础.19、(1)(2),【解析】

(1)化简等式,即可求出角.(2)利用角C的余弦公式,求出c与a的关系式,再由正弦定理求出角A的正弦值,再结合面积公式求出c的值.【详解】(1)∵,∴,即,∴.又,∴.(2)∵,∴,即,∴.∵,且,∴,∴,由正弦定理得,解得.【点睛】本题考查利用解三角形,属于基础题.20、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论