2025届江西省新建一中数学高一下期末经典模拟试题含解析_第1页
2025届江西省新建一中数学高一下期末经典模拟试题含解析_第2页
2025届江西省新建一中数学高一下期末经典模拟试题含解析_第3页
2025届江西省新建一中数学高一下期末经典模拟试题含解析_第4页
2025届江西省新建一中数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省新建一中数学高一下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.2.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定3.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n4.阅读如图所示的算法框图,输出的结果S的值为A.8 B.6 C.5 D.45.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.66.在中,已知、、分别是角、、的对边,若,则的形状为A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形7.已知,则的值等于()A. B. C. D.8.下列各命题中,假命题的是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,一定等于弧度D.不论是用角度制还是用弧度制度量角,它们都与圆的半径长短有关9.下列结论正确的是().A.若ac<bc,则a<b B.若a2<C.若a>b,c<0,则ac<bc D.若a<b10.在中,,则的形状是()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,则__________.12.已知点P是矩形ABCD边上的一动点,,,则的取值范围是________.13.设等差数列,的前项和分别为,,若,则__________.14.已知,则______;的最小值为______.15.记为数列的前项和.若,则_______.16.有6根细木棒,其中较长的两根分别为,,其余4根均为,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调递增区间;(2)当时,求函数的最大值和最小值.18.(1)求证:(2)请利用(1)的结论证明:(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:(4)化简:.19.泉州与福州两地相距约200千米,一辆货车从泉州匀速行驶到福州,规定速度不得超过千米/时,已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度千米/时的平方成正比,比例系数为0.01;固定部分为64元.(1)把全程运输成本元表示为速度千米/时的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大速度行驶?20.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?21.已知,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=42、A【解析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【点睛】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.3、B【解析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.4、B【解析】

判断框,即当执行到时终止循环,输出.【详解】初始值,代入循环体得:,,,输出,故选A.【点睛】本题由于循环体执行的次数较少,所以可以通过列举每次执行后的值,直到循环终止,从而得到的输出值.5、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.6、D【解析】

由,利用正弦定理可得,进而可得sin2A=sin2B,由此可得结论.【详解】∵,∴由正弦定理可得∴sinAcosA=sinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=π∴A=B或A+B=∴△ABC的形状是等腰三角形或直角三角形故选D.【点睛】判断三角形形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.7、B【解析】.8、D【解析】

根据弧度制的概念,逐项判断,即可得出结果.【详解】A选项,“度”与“弧度”是度量角的两种不同的度量单位,正确;B选项,一度的角是周角的,一弧度的角是周角的,正确;C选项,根据弧度的定义,一定等于弧度,正确;D选项,用角度制度量角,与圆的半径长短无关,故D错.故选:D.【点睛】本题主要考查弧度制的相关判定,熟记概念即可,属于基础题型.9、C【解析】分析:根据不等式性质逐一分析即可.详解:A.若ac<bc,则a<b,因为不知道c的符号,故错误;B.若a2<可令a=-1,b=-2,则结论错误;D.若a<b,则点睛:考查不等式的基本性质,做此类题型最好的方法就是举例子注意排除即可.属于基础题.10、B【解析】

将,分别代入中,整理可得,即可得到,进而得到结论【详解】由题可得,即在中,,,即又,是直角三角形,故选B【点睛】本题考查三角形形状的判定,考查和角公式,考查已知三角函数值求角二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。12、【解析】

如图所示,以为轴,为轴建立直角坐标系,故,,设.,根据几何意义得到最值,【详解】如图所示:以为轴,为轴建立直角坐标系,故,,设.则.表示的几何意义为到点的距离的平方减去.根据图像知:当为或的中点时,有最小值为;当与中的一点时有最大值为.故答案为:.【点睛】本题考查了向量的数量积的范围,转化为几何意义是解题关键.13、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.14、50【解析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.15、【解析】

由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.16、【解析】

分较长的两条棱所在直线相交,和较长的两条棱所在直线异面两种情况讨论,结合三棱锥的结构特征,即可求出结果.【详解】当较长的两条棱所在直线相交时,如图所示:不妨设,,,所以较长的两条棱所在直线所成角为,由勾股定理可得:,所以,所以此时较长的两条棱所在直线所成角的余弦值为;当较长的两条棱所在直线异面时,不妨设,,则,取CD的中点为O,连接OA,OB,所以CD⊥OA,CD⊥OB,而,所以OA+OB<AB,不能构成三角形。所以此情况不存在。故答案为:.【点睛】本题主要考查异面直线所成的角,熟记异面直线所成角的概念,以及三棱锥的结构特征即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)函数的最大值为,最小值为.【解析】

用二倍角正弦公式、降幂公式、辅助角公式对函数的解析式进行化简,然后利用正弦型函数的单调性求解即可.【详解】.(1)当时,函数递增,解得,所以函数的单调递增区间为;(2)因为,所以,因此所以函数的最大值为,最小值为.【点睛】本题考查了正弦型函数的单调性和最值,考查了辅助角公式、二倍角的正弦公式、降幂公式,考查了数学运算能力.18、(1)证明见解析,(2)证明见解析,(3),证明见解析(4)【解析】

(1)右边余切化正切后,利用二倍角的正切公式变形可证;(2)将(1)的结果变形为,然后将所证等式的右边的正切化为余切即可得证;(3)根据(1)(2)的规律可得结果;(4)由(3)的结果可得.【详解】(1)证明:因为,所以(2)因为,所以,所以(3)一般地:,证明:因为所以,以此类推得(4).【点睛】本题考查了归纳推理,考查了同角公式,考查了二倍角的正切公式,属于中档题.19、(1),;(2),货车应以千米/时速度行驶,货车应以千米/时速度行驶【解析】

(1)先计算出从泉州匀速行驶到福州所用时间,然后乘以每小时的运输成本(可变部分加固定部分),由此求得全程运输成本,并根据速度限制求得定义域.(2)由,,对进行分类讨论.当时,利用基本不等式求得行驶速度.当时,根据的单调性求得行驶速度.【详解】(1)依题意一辆货车从泉州匀速行驶到福州所用时间为小时,全程运输成本为,所求函数定义域为;(2)当时,故有,当且仅当,即时,等号成立.当时,易证在上单调递减故当千米/时,全程运输成本最小.综上,为了使全程运输成本最小,,货车应以千米/时速度行驶,货车应以千米/时速度行驶.【点睛】本小题主要考查函数模型在实际生活中的应用,考查基本不等式求最小值,考查函数的单调性,考查分类讨论的数学思想方法,属于中档题.20、(1);(2).【解析】

(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定义域;(2)根据对数的运算性质可得出关于的方程,解出即可.【详解】(1)由,得,所以,函数定义域为;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合题意,所以,当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论