2025届江西省樟村中学数学高一下期末经典模拟试题含解析_第1页
2025届江西省樟村中学数学高一下期末经典模拟试题含解析_第2页
2025届江西省樟村中学数学高一下期末经典模拟试题含解析_第3页
2025届江西省樟村中学数学高一下期末经典模拟试题含解析_第4页
2025届江西省樟村中学数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省樟村中学数学高一下期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与圆相切,则()A. B. C. D.或2.已知一个三角形的三边是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最小角的余弦值是()A. B.C. D.3.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是()A. B. C. D.4.执行如图所示的程序框图,则输出的值是()A. B. C. D.5.已知幂函数过点,则的值为()A. B.1 C.3 D.66.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.27.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.8.等比数列的各项均为正数,且,则()A.3 B.6 C.9 D.819.若,则的最小值是()A. B. C. D.10.在锐角中,内角,,的对边分别为,,,,,成等差数列,,则的周长的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数那么的值为.12.某几何体的三视图如图所示,则该几何体的体积为__________.13.某程序框图如图所示,则该程序运行后输出的S的值为________.14.已知,若角的终边经过点,求的值.15.在上,满足的的取值范围是______.16.已知求______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设的内角所对应的边长分别是,且.(Ⅰ)当时,求的值;(Ⅱ)当的面积为时,求的值.18.已知为常数且均不为零,数列的通项公式为并且成等差数列,成等比数列.(1)求的值;(2)设是数列前项的和,求使得不等式成立的最小正整数.19.从代号为A、B、C、D、E的5个人中任选2人(1)列出所有可能的结果;(2)若A、B、C三人为男性,D、E两人为女性,求选出的2人中不全为男性的概率.20.已知向量,,且.(1)求的值;(2)求的值.21.已知向量,,函数.(1)若,求的取值集合;(2)当时,不等式恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

本题首先可根据圆的方程确定圆心以及半径,然后根据直线与圆相切即可列出算式并通过计算得出结果。【详解】由题意可知,圆方程为,所以圆心坐标为,圆的半径,因为直线与圆相切,所以圆心到直线距离等于半径,即解得或,故选D。【点睛】本题考查根据直线与圆相切求参数,考查根据圆的方程确定圆心与半径,若直线与圆相切,则圆心到直线距离等于半径,考查推理能力,是简单题。2、B【解析】

设的最大角为,最小角为,可得出,,由题意得出,由二倍角公式,利用正弦定理边角互化思想以及余弦定理可得出关于的方程,求出的值,可得出的值.【详解】设的最大角为,最小角为,可得出,,由题意得出,,所以,,即,即,将,代入得,解得,,,则,故选B.【点睛】本题考查利用正弦定理和余弦定理解三角形,解题时根据对称思想设边长可简化计算,另外就是充分利用二倍角公式进行转化是解本题的关键,综合性较强.3、B【解析】

根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为,从而可得到正确的选项.【详解】∵打电话的顺序是任意的,打电话给甲、乙、丙三人的概率都相等,∴第一个打电话给甲的概率为.故选:B.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4、C【解析】

根据程序框图列出算法循环的每一步,结合判断条件得出输出的的值.【详解】执行如图所示的程序框图如下:不成立,,;不成立,,;不成立,,;不成立,,.成立,跳出循环体,输出的值为,故选C.【点睛】本题考查利用程序框图计算输出结果,对于这类问题,通常利用框图列出算法的每一步,考查计算能力,属于中等题.5、C【解析】

设,代入点的坐标,求得,然后再求函数值.【详解】设,由题意,,即,∴.故选:C.【点睛】本题考查幂函数的解析式,属于基础题.6、B【解析】

令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.7、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.8、A【解析】

利用等比数列性质可求得,将所求式子利用对数运算法则和等比数列性质可化为,代入求得结果.【详解】且本题正确选项:【点睛】本题考查等比数列性质的应用,关键是灵活利用等比中项的性质,属于基础题.9、A【解析】,则,当且仅当取等号.所以选项是正确的.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.10、A【解析】

依题意求出,由正弦定理可得,再根据角的范围,可求出的范围,即可求得的周长的取值范围.【详解】依题可知,,由,可得,所以,即,而.∴,即.故的周长的取值范围为.故选:A.【点睛】本题主要考查正弦定理在解三角形中的应用,两角和与差的正弦公式的应用,以及三角函数的值域求法的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.12、【解析】由三视图知该几何体是一个半圆锥挖掉一个三棱锥后剩余的部分,如图所示,所以其体积为.点睛:求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.13、1【解析】

根据程序框图,依次计算运行结果,发现输出的S值周期变化,利用终止运行的条件判断即可求解【详解】由程序框图得:S=1,k=1;第一次运行S=1第二次运行S=第三次运行S=1当k=2020,程序运行了2019次,2019=4×504+3,故S的值为1故答案为1【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题14、【解析】

由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.15、【解析】

由,结合三角函数线,即可求解,得到答案.【详解】如图所示,因为,所以满足的的取值范围为.【点睛】本题主要考查了特殊角的三角函数值,以及三角函数线的应用,着重考查了推理与运算能力,属于基础题.16、23【解析】

直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由得,再利用正弦定理即可求出(Ⅱ)由可得,再利用余弦定理即可求出.【详解】(Ⅰ)∵∴,由正弦定理可知:,∴(Ⅱ)∵∴由余弦定理得:∴,即则:故:【点睛】本题主要考查了正弦定理与余弦定理的应用,考查了推理能力与计算能力,属于中档题.18、(1);(2)【解析】

(1)由,可得,,,.根据、、成等差数列,、、成等比数列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分别利用等差数列与等比数列的求和公式即可得出.【详解】(1),,,,.,,成等差数列,,,成等比数列.,,,,,.联立解得:,.(2)由(1)可得:,,由,解得..【点睛】本题考查等差数列与等比数列的通项公式与求和公式及其性质、分类讨论方法、不等式的解法,考查推理能力与计算能力,属于中档题.19、(1)见解析(2)0.7【解析】

(1)从代号为、、、、的5个人中任选2人,利用列举法能求出所有可能的结果.(2)、、三人为男性,、两人为女性,利用列举法求出选出的2人中不全为男性包含的基本事件有7种,由此能求出选出的2人中不全为男性的概率.【详解】(1)从代号为、、、、的5个人中任选2人.所有可能的结果有10种,分别为:,,,,,,,,,.(2)、、三人为男性,、两人为女性,选出的2人中不全为男性包含的基本事件有7种,分别为:,,,,,,.选出的2人中不全为男性的概率.【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20、(1);(2)【解析】

(1)由向量垂直的坐标运算可得,再求解即可;(2)利用三角函数诱导公式可得原式,再构造齐次式求解即可.【详解】解:(1)因为,所以,因为,,所以,即,故.(2).【点睛】本题考查了向量垂直的坐标运算,重点考查了三角函数诱导公式及构造齐次式求值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论