版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届无锡市重点中学数学高一下期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,则函数的表达式是()A. B.C. D.2.函数的最小正周期是A. B. C. D.3.棱柱的侧面一定是()A.平行四边形 B.矩形 C.正方形 D.菱形4.下列函数中,在上存在最小值的是()A. B. C. D.5.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关6.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④7.已知向量,,则()A.-1 B.-2 C.1 D.08.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.9.已知数列为等比数列,且,则()A. B. C. D.10.将图像向左平移个单位,所得的函数为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.记为数列的前项和.若,则_______.13.在平面直角坐标系xOy中,若直线与直线平行,则实数a的值为______.14.某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.15.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____.16.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.18.解下列三角方程:(1);(2).19.设函数,其中,.(1)设,若函数的图象的一条对称轴为直线,求的值;(2)若将的图象向左平移个单位,或者向右平移个单位得到的图象都过坐标原点,求所有满足条件的和的值;(3)设,,已知函数在区间上的所有零点依次为,且,,求的值.20.在中,内角,,所对的边分别为,,且.(1)求角的大小;(2)若,,求的面积.21.已知曲线C:x2+y2+2x+4y+m=1.(1)当m为何值时,曲线C表示圆?(2)若直线l:y=x﹣m与圆C相切,求m的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据函数的最值求得,根据函数的周期求得,根据函数图像上一点的坐标求得,由此求得函数的解析式.【详解】由题图可知,且即,所以,将点的坐标代入函数,得,即,因为,所以,所以函数的表达式为.故选D.【点睛】本小题主要考查根据三角函数图像求三角函数的解析式,属于基础题.2、D【解析】
的最小正周期为,求解得到结果.【详解】由解析式可知,最小正周期本题正确选项:【点睛】本题考查的性质,属于基础题.3、A【解析】根据棱柱的性质可得:其侧面一定是平行四边形,故选A.4、A【解析】
结合初等函数的单调性,逐项判定,即可求解,得到答案.【详解】由题意,函数,当时,取得最小值,满足题意;函数在为单调递增函数,所以函数在区间无最小值,所以B不正确;函数在为单调递增函数,所以函数在区间无最小值,所以C不正确;函数在为单调递增函数,所以函数在区间无最小值,所以D不正确.故选:A.【点睛】本题主要考查了函数的最值问题,其中解答中熟记基本初等函数的单调性,合理判定是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】
根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.6、D【解析】
取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.7、C【解析】
根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.8、A【解析】
分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.9、A【解析】
根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.10、A【解析】
根据三角函数的图象的平移变换得到所求.【详解】由已知将函数y=cos2x的图象向左平移个单位,所得的函数为y=cos2(x)=cos(2x);故选:A.【点睛】本题考查了三角函数的图象的平移;明确平移规律是解答的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在分式的分子和分母上同时除以,然后利用极限的性质来进行计算.【详解】,故答案为:.【点睛】本题考查数列极限的计算,解题时要熟悉一些常见的极限,并充分利用极限的性质来进行计算,考查计算能力,属于基础题.12、【解析】
由和的关系,结合等比数列的定义,即可得出通项公式.【详解】当时,当时,即则数列是首项为,公比为的等比数列故答案为:【点睛】本题主要考查了已知求,属于基础题.13、1【解析】
由,解得,经过验证即可得出.【详解】由,解得.经过验证可得:满足直线与直线平行,则实数.故答案为:1.【点睛】本题考查直线的平行与斜率之间的关系,考查推理能力与计算能力,属于基础题.14、分层抽样.【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.15、【解析】
由已知求得母线长,代入圆锥侧面积公式求解.【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π.故答案为:2π.【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.16、6【解析】
利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)从第27项开始(2)【解析】
(1)写出通项公式解不等式即可;(2)由(1)得数列最后一个负项为取得最大值处即可求解【详解】(1).解得.所以从第27项开始.(2)由上可知当时,最大,最大为.【点睛】本题考查等差数列的通项公式及前n项和的最值,考查推理能力,是基础题18、(1);(2)或.【解析】
(1)先将等式变形为,并利用两角和的余弦公式得出,即可得出,即可得出该方程的解;(2)由,将该方程变形为,求出的值,即可求出该方程的解.【详解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解为或.【点睛】本题考查三角方程的求解,对等式进行化简变形是计算的关键,考查运算求解能力,属于中等题.19、(1);(2),;(3)【解析】
(1)根据对称轴对应三角函数最值以及计算的值;(2)根据条件列出等式求解和的值;(3)根据图象利用对称性分析待求式子的特点,然后求值.【详解】(1),因为是一条对称轴,对应最值;又因为,所以,所以,则;(2)由条件知:,可得,则,又因为,所以,则,故有:,当为奇数时,令,所以,当为偶数时,令,所以,当时,,又因为,所以;(3)分别作出(部分图像)与图象如下:因为,故共有个;记对称轴为,据图有:,,,,,则,令,则,又因为,所以,由于与仅在前半个周期内有交点,所以,则.【点睛】本题考查三角函数图象与性质的综合运用,难度较难.对于三角函数零点个数问题,可将其转化为函数图象的交点个数问题,通过数形结合去解决问题会更方便.20、(1)(2)【解析】
(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【详解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春初中化学九年级下册(科粤版)上课课件 9.2 合成材料
- 四川省自贡市荣县中学2024-2025学年九年级上学期11月第一次月考英语试题(无答案)
- 期末模拟练习(试题)(含答案)-2024-2025学年四年级上册数学冀教版
- 安徽省淮南市西部地区2024-2025学年七年级上学期期中语文试题(含答案)
- 高一 人教版 化学 第四章 第二节《元素周期表和元素周期律的应用》课件
- 品管圈PDCA参赛案例-儿科提高危重患儿床旁交接班合格率医院品质管理成果汇报
- 高一年级 科技实践教材 第三单元《走进基因检测技术》课件
- 北京市海淀区2023-2024学年三年级上学期语文期末试卷
- 2025届贵州省金太阳联考一模生物试题(含答案解析)
- 《植物的生殖方式》课件
- 食品安全与质量检测技能大赛考试题及答案
- ASTM-D3359-(附著力测试标准)-中文版
- 第23课 全民族浴血奋战与抗日战争的胜利 课件-高一上学期统编版(2019)必修中外历史纲要上
- DBJ15-22-2021-T 锤击式预应力混凝土管桩工程技术规程(广东省)
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 私人酒窖租赁合同三篇
- 2024年国防知识竞赛考试题库500题(含答案)
- 科学阅读材料(课件)二年级上册科学教科版
- 关于发展乡村产业的建议
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 招标代理机构选取技术标投标方案(技术方案)
评论
0/150
提交评论