版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市垦利区第一中学新高考数学押题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.当时,函数的图象大致是()A. B.C. D.2.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.74.双曲线x26-y23=1的渐近线与圆(x-3)2+y2=A.3 B.2C.3 D.65.若集合,,则下列结论正确的是()A. B. C. D.6.已知为非零向量,“”为“”的()A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件7.已知数列的通项公式为,将这个数列中的项摆放成如图所示的数阵.记为数阵从左至右的列,从上到下的行共个数的和,则数列的前2020项和为()A. B. C. D.8.如图,在圆锥SO中,AB,CD为底面圆的两条直径,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,异面直线SC与OE所成角的正切值为()A. B. C. D.9.设x、y、z是空间中不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“且”为真命题的是()A.③④ B.①③ C.②③ D.①②10.若x,y满足约束条件的取值范围是A.[0,6] B.[0,4] C.[6, D.[4,11.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.12.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的渐近线与准线的一个交点坐标为,则双曲线的焦距为______.14.已知函数的图象在点处的切线方程是,则的值等于__________.15.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.16.已知,,,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三棱锥中侧面与底面都是边长为2的等边三角形,且面面,分别为线段的中点.为线段上的点,且.(1)证明:为线段的中点;(2)求二面角的余弦值.18.(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.19.(12分)(选修4-4:坐标系与参数方程)在平面直角坐标系,已知曲线(为参数),在以原点为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)过点且与直线平行的直线交于,两点,求点到,的距离之积.20.(12分)为提供市民的健身素质,某市把四个篮球馆全部转为免费民用(1)在一次全民健身活动中,四个篮球馆的使用场数如图,用分层抽样的方法从四场馆的使用场数中依次抽取共25场,在中随机取两数,求这两数和的分布列和数学期望;(2)设四个篮球馆一个月内各馆使用次数之和为,其相应维修费用为元,根据统计,得到如下表的数据:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求与的回归直线方程;②叫做篮球馆月惠值,根据①的结论,试估计这四个篮球馆月惠值最大时的值参考数据和公式:,21.(12分)某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.(1)求抽取的这家店铺,元旦当天销售额的平均值;(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.22.(10分)设的内角、、的对边长分别为、、.设为的面积,满足.(1)求;(2)若,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由,解得,即或,函数有两个零点,,不正确,设,则,由,解得或,由,解得:,即是函数的一个极大值点,不成立,排除,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.2、A【解析】
由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.3、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.4、A【解析】
由圆心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y=±22x,圆心坐标为(3,0).由题意知,圆心到渐近线的距离等于圆的半径r,即r=±答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.5、D【解析】
由题意,分析即得解【详解】由题意,故,故选:D【点睛】本题考查了元素和集合,集合和集合之间的关系,考查了学生概念理解,数学运算能力,属于基础题.6、B【解析】
由数量积的定义可得,为实数,则由可得,根据共线的性质,可判断;再根据判断,由等价法即可判断两命题的关系.【详解】若成立,则,则向量与的方向相同,且,从而,所以;若,则向量与的方向相同,且,从而,所以.所以“”为“”的充分必要条件.故选:B【点睛】本题考查充分条件和必要条件的判定,考查相等向量的判定,考查向量的模、数量积的应用.7、D【解析】
由题意,设每一行的和为,可得,继而可求解,表示,裂项相消即可求解.【详解】由题意,设每一行的和为故因此:故故选:D【点睛】本题考查了等差数列型数阵的求和,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.8、D【解析】
可过点S作SF∥OE,交AB于点F,并连接CF,从而可得出∠CSF(或补角)为异面直线SC与OE所成的角,根据条件即可求出,这样即可得出tan∠CSF的值.【详解】如图,过点S作SF∥OE,交AB于点F,连接CF,则∠CSF(或补角)即为异面直线SC与OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故选:D.【点睛】本题考查了异面直线所成角的定义及求法,直角三角形的边角的关系,平行线分线段成比例的定理,考查了计算能力,属于基础题.9、C【解析】
①举反例,如直线x、y、z位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x、y、z位于正方体的三个共点侧面时.【详解】①当直线x、y、z位于正方体的三条共点棱时,不正确;②因为垂直于同一平面的两直线平行,正确;③因为垂直于同一直线的两平面平行,正确;④如x、y、z位于正方体的三个共点侧面时,不正确.故选:C.【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.10、D【解析】解:x、y满足约束条件,表示的可行域如图:目标函数z=x+2y经过C点时,函数取得最小值,由解得C(2,1),目标函数的最小值为:4目标函数的范围是[4,+∞).故选D.11、C【解析】
利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.12、D【解析】
根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
由双曲线的渐近线,以及求得的值即可得答案.【详解】由于双曲线的渐近线与准线的一个交点坐标为,所以,即①,把代入,得,即②又③联立①②③,得.所以.故答案是:1.【点睛】本题考查双曲线的性质,注意题目“双曲线的渐近线与准线的一个交点坐标为”这一条件的运用,另外注意题目中要求的焦距即,容易只计算到,就得到结论.14、【解析】
利用导数的几何意义即可解决.【详解】由已知,,,故.故答案为:.【点睛】本题考查导数的几何意义,要注意在某点的切线与过某点的切线的区别,本题属于基础题.15、③④【解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.16、【解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【详解】,,,,,,,,.故答案为:【点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)设为中点,连结,先证明,可证得,假设不为线段的中点,可得平面,这与矛盾,即得证;(2)以为原点,以分别为轴建立空间直角坐标系,分别求解平面,平面的法向量的法向量,利用二面角的向量公式,即得解.【详解】(1)设为中点,连结.∴,,又平面,平面,∴.又分别为中点,,又,∴.假设不为线段的中点,则与是平面内内的相交直线,从而平面,这与矛盾,所以为线段的中点.(2)以为原点,由条件面面,∴,以分别为轴建立空间直角坐标系,则,,,,,,.设平面的法向量为所以取,则,.同法可求得平面的法向量为∴,由图知二面角为锐二面角,二面角的余弦值为.【点睛】本题考查了立体几何与空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.18、(1)是函数的极大值点,理由详见解析;(2)1.【解析】
(1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点;(2)利用题目已有条件得,再证明时,不等式恒成立,即证,从而可知整数的最小值为1.【详解】解:(1)当时,.令,则当时,.即在内为减函数,且∴当时,;当时,.∴在内是增函数,在内是减函数.综上,是函数的极大值点.(2)由题意,得,即.现证明当时,不等式成立,即.即证令则∴当时,;当时,.∴在内单调递增,在内单调递减,的最大值为.∴当时,.即当时,不等式成立.综上,整数的最小值为.【点睛】本题考查学生利用导数处理函数的极值,最值,判断函数的单调性,由此来求解函数中的参数的取值范围,对学生要求较高,然后需要学生能构造新函数处理恒成立问题,为难题19、(1)曲线:,直线的直角坐标方程;(2)1.【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线化为普通方程,再根据将直线的极坐标方程化为直角坐标方程;(2)根据题意设直线参数方程,代入C方程,利用参数几何意义以及韦达定理得点到,的距离之积试题解析:(1)曲线化为普通方程为:,由,得,所以直线的直角坐标方程为.(2)直线的参数方程为(为参数),代入化简得:,设两点所对应的参数分别为,则,.20、(1)见解析,12.5(2)①②20【解析】
(1)运用分层抽样,结合总场次为100,可求得的值,再运用古典概型的概率计算公式可求解果;(2)①由公式可计算的值,进而可求与的回归直线方程;②求出,再对函数求导,结合单调性,可估计这四个篮球馆月惠值最大时的值.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春初中化学九年级下册(科粤版)上课课件 9.2 合成材料
- 四川省自贡市荣县中学2024-2025学年九年级上学期11月第一次月考英语试题(无答案)
- 期末模拟练习(试题)(含答案)-2024-2025学年四年级上册数学冀教版
- 安徽省淮南市西部地区2024-2025学年七年级上学期期中语文试题(含答案)
- 高一 人教版 化学 第四章 第二节《元素周期表和元素周期律的应用》课件
- 品管圈PDCA参赛案例-儿科提高危重患儿床旁交接班合格率医院品质管理成果汇报
- 高一年级 科技实践教材 第三单元《走进基因检测技术》课件
- 北京市海淀区2023-2024学年三年级上学期语文期末试卷
- 2025届贵州省金太阳联考一模生物试题(含答案解析)
- 《植物的生殖方式》课件
- ASTM-D3359-(附著力测试标准)-中文版
- 第23课 全民族浴血奋战与抗日战争的胜利 课件-高一上学期统编版(2019)必修中外历史纲要上
- DBJ15-22-2021-T 锤击式预应力混凝土管桩工程技术规程(广东省)
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 私人酒窖租赁合同三篇
- 2024年国防知识竞赛考试题库500题(含答案)
- 科学阅读材料(课件)二年级上册科学教科版
- 关于发展乡村产业的建议
- 中国人工智能系列白皮书一元宇宙技术(2024 版)
- 招标代理机构选取技术标投标方案(技术方案)
- 进出口贸易跟供应商签订合同模板
评论
0/150
提交评论