版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省毕节市大方县三中2025届高一数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点,且圆心在直线上的圆的方程是()A. B.C. D.2.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、163.下面一段程序执行后的结果是()A.6 B.4 C.8 D.104.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.5.已知直线,与互相垂直,则的值是()A. B.或 C. D.或6.已知数列的通项公式,前n项和为,若,则的最大值是()A.5 B.10 C.15 D.207.下列函数中,值域为的是()A. B. C. D.8.圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为()A. B. C. D.9.设为锐角,,若与共线,则角()A.15° B.30° C.45° D.60°10.执行如图所示的程序框图,则输出的()A.3 B.4 C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,且(),记,则的值是________.12.下列命题中:①若,则的最大值为;②当时,;③的最小值为;④当且仅当均为正数时,恒成立.其中是真命题的是__________.(填上所有真命题的序号)13.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.14.若,则_________.15.在中,内角的对边分别为,若的周长为,面积为,,则__________.16.已知为钝角,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数和实数,若存在,使成立,则称为函数关于的一个“生长点”.若为函数关于的一个“生长点”,则______.18.已知数列是递增的等比数列,且(Ⅰ)求数列的通项公式;(Ⅱ)设为数列的前n项和,,求数列的前n项和.19.在中,角A、B、C的对边分别为a、b、c,面积为S,已知(Ⅰ)求证:成等差数列;(Ⅱ)若求.20.已知数列的前n项和为,满足:.(1)证明:数列是等比数列;(2)令,,求数列的前n项和.21.已知向量,,函数.(1)求函数的单调递增区间;(2)在中,内角、、所对边的长分别是、、,若,,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
直接根据所给信息,利用排除法解题。【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。2、B【解析】试题分析:高级职称应抽取;中级职称应抽取;一般职员应抽取.考点:分层抽样点评:本题主要考查分层抽样的定义与步骤.分层抽样:当总体是由差异明显的几个部分组成的,可将总体按差异分成几个部分(层),再按各部分在总体中所占比例进行抽样.3、A【解析】
根据题中的程序语句,直接按照顺序结构的功能即可求出。【详解】由题意可得:,,,所以输出为6,故选A.【点睛】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。4、C【解析】
方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【点睛】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.5、B【解析】
根据直线垂直公式得到答案.【详解】已知直线,与互相垂直或故答案选B【点睛】本题考查了直线垂直的关系,意在考查学生的计算能力.6、B【解析】
将的通项公式分解因式,判断正负分界处,进而推断的最大最小值得到答案.【详解】数列的通项公式当时,当或是最大值为或最小值为或的最大值为故答案为B【点睛】本题考查了前n项和为的最值问题,将其转化为通项公式的正负问题是解题的关键.7、B【解析】
依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.8、D【解析】
根据圆锥的体积求出底面圆的半径和高,求出母线长,即可计算圆锥的表面积.【详解】圆锥的高和底面半径之比,∴,又圆锥的体积,即,解得;∴,母线长为,则圆锥的表面积为.故选:D.【点睛】本题考查圆锥的体积和表面积公式,考查计算能力,属于基础题.9、B【解析】由题意,,又为锐角,∴.故选B.10、C【解析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出相应变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得
S=0,n=1
S=2,n=2
满足条件S<30,执行循环体,S=2+4=6,n=3
满足条件S<30,执行循环体,S=6+8=14,n=4
满足条件S<30,执行循环体,S=14+16=30,n=1
此时,不满足条件S<30,退出循环,输出n的值为1.
故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.12、①②【解析】
根据均值不等式依次判断每个选项的正误,得到答案.【详解】①若,则的最大值为,正确②当时,,时等号成立,正确③的最小值为,取错误④当且仅当均为正数时,恒成立均为负数时也成立.故答案为①②【点睛】本题考查了均值不等式,掌握一正二定三相等的具体含义是解题的关键.13、7【解析】
奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.14、【解析】
利用诱导公式求解即可【详解】,故答案为:【点睛】本题考查诱导公式,是基础题15、3【解析】
分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.16、.【解析】
利用同角三角函数的基本关系即可求解.【详解】由为钝角,且,所以,所以.故答案为:【点睛】本题考查了同角三角函数的基本关系,同时考查了象限角的三角函数的符号,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
由为函数关于的一个“生长点”,得到由诱导公式可得答案.【详解】解:为函数关于的一个“生长点”,,故答案为:.【点睛】本题主要考查利用诱导公式进行化简求值,及函数的创新题型,属于中档题.18、(Ⅰ)(Ⅱ)【解析】试题分析:(1)设等比数列的公比为q,,根据已知由等比数列的性质可得,联立解方程再由数列为递增数列可得则通项公式可得(2)根据等比数列的求和公式,有所以,裂项求和即可试题解析:(1)设等比数列的公比为q,所以有联立两式可得或者又因为数列为递增数列,所以q>1,所以数列的通项公式为(2)根据等比数列的求和公式,有所以所以考点:等比数列的通项公式和性质,数列求和19、(Ⅰ)详见解析;(Ⅱ)4.【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(4)在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.试题解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差数列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考点:三角函数与解三角形.20、(1)证明见解析(2)【解析】
(1)利用当时,求证即可;(2)先结合(1)求得,再由,然后累加求和即可.【详解】解:(1)因为,①,②①-②得:,即,又,即,则,即数列是以6为首项,3为公比的等比数列;(2)由(1)得,则,即,则,即,故.【点睛】本题考查了利用定义法证明等比数列,重点考查了公式法求和及裂项求和法求和,属中档题.21、(1)的增区间是,(2)【解析】
(1)利用平面向量数量积的坐标表示公式、二倍角的正弦公式、余弦二倍角的降幂公式、以及辅助角公式可以函数的解析式化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国动力滚筒行业投资前景及策略咨询研究报告
- 2024事业单位合同制人员绩效考核劳动合同3篇
- 2024年度工厂知识产权许可及技术咨询合同2篇
- 2024屠户生猪代宰及屠宰设备租赁服务合同3篇
- 2024年标准化员工宿舍租赁合同范本版B版
- 2024年度建设工程纠纷执行财产保全担保合同3篇
- 2024年度影视作品版权授权合同公证模板2篇
- 2024年汽车销售中介合同3篇
- 2024年版二手房产转让合同3篇
- 2024版固化地坪施工项目市场分析与竞争策略合同3篇
- 产品研发合伙人合作协议书
- 2024年化学检验员(中级工)技能鉴定考试题库(附答案)
- 【MOOC】中学化学教学设计与实践-北京师范大学 中国大学慕课MOOC答案
- 山东师范大学《学术研究与论文写作》2021-2022学年第一学期期末试卷
- 2023-2024学年广东省深圳市宝安区五年级(上)期末英语试卷
- 2024年度VR虚拟现实内容创作合同
- 幼儿园社会教育专题-形考任务二-国开(FJ)-参考资料
- 第五单元有趣的立体图形 (单元测试)-2024-2025学年一年级上册数学 北师大版
- 设备基础(土建)施工方案
- 部编 2024版历史七年级上册期末(全册)复习卷(后附答案及解析)
- 陶艺课程课件
评论
0/150
提交评论