高分子的结构_第1页
高分子的结构_第2页
高分子的结构_第3页
高分子的结构_第4页
高分子的结构_第5页
已阅读5页,还剩116页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于高分子的结构第7章高分子的结构第2页,共121页,星期六,2024年,5月高分子结构凝聚态结构链结构晶态结构非晶态结构液晶态结构取向态结构近程结构(一级结构)远程结构(二级结构)化学组成结构单元的键接方式分子的构造分子链的构型分子量及其分布分子链的尺寸高分子链的构象和柔顺性高分子的结构层次三级结构高级结构第3页,共121页,星期六,2024年,5月1.碳链高分子:

主链全部由碳原子组成(有共价键连接而成),由加成反应得到:例如:PE、PP、PVC、PS、MMA。特点:不溶于水,可塑性(可加工性)但耐热性差。2.杂链高分子:

主链除C原子外还有O、N、S等杂原子组成,多由缩聚或开环反应得到。e.g:PA(尼龙)、PET(涤纶)、PPO(聚苯醚)、PSU(聚砜)、POM(聚甲醛)、PPS(聚苯硫醚)。特点:具有极性,易水解、醇解,耐热性比较好,强度高。

可用作工程塑料。7.1高分子的近程结构7.1.1分子链的化学组成决定聚合物的基本性能第4页,共121页,星期六,2024年,5月3.元素有机高分子:

主链中不含碳,含有Si、P、Ti、Al等元素。

特点:具有无机物的热稳定性,有机物的弹性和塑性。e.g:硅橡胶-123℃使用,耐低温性好4.无机高分子:分子链(主链和侧基全部由无机元素组成,不含C原子。

eg.聚二氧化硅、聚二氟磷氮等。第5页,共121页,星期六,2024年,5月端基EndGroup

:端基所占比例很小,对高分子的力学性能没有影响,但对热稳定性影响最大,分子链的降解通常从端基开始,要提高耐热性,一般要对高分子链进行封端。e.g:加入封端,以提高PET耐热性和控制分子量。第6页,共121页,星期六,2024年,5月首-尾连接首-首连接尾-尾连接如单体CH2=CHX聚合时,所得单体单元结构如下:首尾单体单元连接方式可有如下三种:7.1.2结构单元的键接方式键接方式:是指结构单元在高分子链中的联结方式(顺序)居多少量少量第7页,共121页,星期六,2024年,5月线形无规支化梳形支化星形支化交联网络7.1.3高分的构造—线形、支化和交联第8页,共121页,星期六,2024年,5月1.线形高分子(linearpolymer):

一般高分子呈线形,分子长链可以蜷曲成团,也可以伸展成直线。线形的分子间没有化学键结合,在受热或者受力的情况下分子间可以相互移动,因此线形高聚物可以在适当的溶剂中溶解,加热时可以熔融,易于加工成型。2.支化高分子(branchingpolymer):

与线形高分子的化学性质相似,但物理机械性能不同。支化破坏了分子的规整性,故结晶度大大降低,故密度,熔点,结晶度和硬度等方面都低于线形高分子。

第9页,共121页,星期六,2024年,5月

交联与支化有本质区别:支化(可溶,可熔,有软化点)交联(不溶,不熔,可溶胀)3.交联(networkpolymer):

高分子链之间通过支链连接成一个空间三维网状结构热固性塑料、硫化橡胶、聚乙烯交联都是交联高分子第10页,共121页,星期六,2024年,5月eg:橡胶硫化未硫化:分子间容易滑动,受力后不能恢复原状硫化后:不易滑动,有可逆的弹性形变,称为具有实用意义的橡胶。注意:交联度不同,性能也不相同;如交联度小的橡胶(含硫量<5%),弹性好,交联度大(20%~30%)的橡胶,弹性差,随着交联度的增加,机械强度和硬度都将增加,最后失去弹性而变脆.第11页,共121页,星期六,2024年,5月4.梯形和双螺旋形高分子:e.g:均苯四甲酸二酐和四氨基苯缩聚得到全梯形吡咙,可耐高温320℃,模量和强度都非常高。

第12页,共121页,星期六,2024年,5月PE种类链的几何形状

ρ拉伸强度σt(kg/cm2)Tm最高使用温度℃LDPE支化结构0.91~0.9470~15010580~100HDPE线形结构0.95~0.97210~370135120交联PE交联结构0.95~1.40100~210-----135用途:1.LDPE:薄膜材料、软制品2.HDPE:硬制品、管材3.交联聚乙烯:海底电缆、电工器材PE链几何形状对其性能的影响高分子结构不同,物理性能也有所不同。第13页,共121页,星期六,2024年,5月7.1.4共聚物的组成与结构共聚物:由两种或两种以上的共聚而成的聚合物以A、B两种单体单元所构成的共聚物为例,按连接方式可分为:交替共聚物(alternatingcopolymer)ABABABABABABABA无规共聚物(randomcopolymer)AABABBAA嵌段共聚物(blockcopolymer)AAAAAABBBBBAAAAAA接枝共聚物(graftcopolymer)AAAAAAAAAAAAABBBBBBBB第14页,共121页,星期六,2024年,5月7.1.5高分子的构型构型:指分子链中由化学键所固定的原子和原子团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。构型异构几何异构:由双键或环状结构引起旋光异构(由手性中心引起)第15页,共121页,星期六,2024年,5月Cis-顺式Trans-反式1.几何异构:

分子中含有碳碳双键,故形成顺反异构(因为内双键中键是不能旋转的)。第16页,共121页,星期六,2024年,5月

共轭二烯烃生成顺式和反式构型具体取决于催化体系,用钴、镍和钛催化系统可以得到顺式构型含量大于94%的顺丁橡胶。用钒和醇烯催化剂可以得到反式聚丁二烯。实例应用:顺式聚丁二烯分子链之间距离比较大,是一种弹性很好的橡胶,而反式聚丁二烯由于结构对称,极易结晶,室温下用作塑料。第17页,共121页,星期六,2024年,5月2.立体异构:(光学异构)由于结构单元中含有不对称碳原子,互为镜影的两种异构体表现出不同的旋光性(如下图)。材料的性能也有不同第18页,共121页,星期六,2024年,5月

结构单元为–CH2-CHX-

型单烯类高分子中,每一个结构单元有一个不对称碳原子,因而每一个链节就有D型和L型两种旋光异构体。

若将C-C链放在一个平面上,则不对称碳原子上的R和H分别处于平面的上或下侧,它们在大分子链中可以有以下三种排列方式。第19页,共121页,星期六,2024年,5月三种类型Isotactic全同立构Atactic无规立构Syndiotactic间同立构高分子全部由一种旋光异构单元键接而成。分子链结构规整,可结晶。两种旋光异构单元交替键接而成。分子链结构规整,可结晶。两种旋光异构单元无规键接而成。分子链结构不规整,不能结晶。第20页,共121页,星期六,2024年,5月分子的大小:分子的尺寸、分子量及分布高分子的空间几何形状:单键的内旋转链的柔性影响链的柔性的因素构象7.2高分子的远程结构第21页,共121页,星期六,2024年,5月定义:是指由于C-C单键内旋转而导致的聚合物分子链在空间中的不同的几何形态。构象(即C-C单键内旋转产生每种排布就是一种构象,所以高分子链有无穷多个构象)。

由于热运动,分子的构象在时刻改变着,因此高分子链的构象是统计性的。第22页,共121页,星期六,2024年,5月

构型是由化学键固定的,是稳定的,要改变构型必须通过化学键的断裂或重组。

构象是通过单键的内旋转实现的(热运动),是不稳定的,具有统计性。典型的构象状态包括伸直链构像、无规线团构象、折叠链构象、螺旋链构象。构型与构象的区别:第23页,共121页,星期六,2024年,5月

以最简单的乙烷内旋转为例7.2.1小分子的内旋转构象图乙烷分子的内旋转构象视线在C-C键方向两个C原子上的C-H键重合时叫顺式,相差60度角时叫反式。时为反式,位能最高。时为顺式,乙烷分子位能最低。顺式反式第24页,共121页,星期六,2024年,5月乙烷C-C单键内旋转位能曲线△E位垒(△E):从一种构象改变为另一种构象时,能量的差值称为内旋转位垒。内旋转位垒越高,内旋转越困难。乙烷中C-C单键旋转一周,必须越过三个位垒,这三个位垒数值一样,因此乙烷分子构象不断变化。第25页,共121页,星期六,2024年,5月

假如视线沿C-C键方向,则中间两个碳原子上键接的甲基分别在两边并相距最远时为反式(t),构象能量最低。两个甲基重合时为顺式(c),能量最高。两个甲基夹角为60°时为旁式(有左旁式g和右旁式g'两种),能量也相对较低。显然只有反式和旁式较为稳定,大多数分子取这种构象。△E△

正丁烷分子构象第26页,共121页,星期六,2024年,5月7.2.2高分子的内旋转构象

以聚乙烯为例,从聚乙烯分子链中任取一个单键,并将其两端碳原子上所连接的链段等同于正丁烷分子中的两个甲基,那它的位能曲线与正丁烷分子的位能曲线相似,在反式和旁氏位置时能量较低。

如果每个单键内旋转时可以采取比较稳定的构象状态,那么随着烷烃分子中碳原子数目增加,构象数目也会增加。因此高分子链可以呈现出无穷多个构象。第27页,共121页,星期六,2024年,5月

对聚乙烯类无取代基的碳氢链高分子来说,分子链中每个结构单元都采取能量最低的全反式构像,大分子链能量最低,热力学最稳定,所以该类聚合物分子链采取完全伸展的全反式构象—平面锯齿形构象。平面锯齿形构象第28页,共121页,星期六,2024年,5月

当结构单元上带有较大取代基时,如聚丙稀,取全反式构象仍会拥挤,因而聚丙稀采取t和g交替排列(即tgtgtg或tg’tg’tg’)的构象,称螺旋形构象。

螺旋形构象第29页,共121页,星期六,2024年,5月

聚合物溶解或受热成为熔体后,分子运动和单键内旋转能力加大,比较容易越过全反式构象与旁氏构象之间的位垒,因此形成了三种构象状态在分子链上的无规则排列分布,使得整个大分子链呈现出一种无规线团形态。但是一些刚性链聚合物,由于单键内旋转不易发生,在溶液或熔体中仍以伸展的棒状构象存在。无规线团构象第30页,共121页,星期六,2024年,5月

高分子链能够通过内旋转作用改变其构象的性能称为高分子的链柔性。高分子链能形成的构象数越多,柔顺性越大。如果高分子链只能呈一种构象状态,就是链刚性。是指热力学平衡状态下的卷曲程度,取决于反式与旁式构象之间的能量差△。△越小,静态柔性越好。7.2.3高分子的链柔性指在外界条件作用下,分子链从一种平衡态构象向另一种平衡态转变的难易程度,取决于位能曲线上反式与偏式构象之间转变的位垒

E。E越小,构象之间转变越容易,分子链柔性越好。链柔性静态柔性动态柔性第31页,共121页,星期六,2024年,5月

由于高分子链中的单键旋转时互相牵制,即一个键转动,要带动与其相邻的化学键一起运动,这样每个键不能成为一个独立运动的单元,而是由若干个化学键组成了一些能够独立运动的单元,称为“链段”。

链段第32页,共121页,星期六,2024年,5月

整个分子链则可以看作由一些链段组成,链段并不是固定由某些键或链节组成,这一瞬间由这些键或链节组成一个链段,下一瞬间这些键或链节又可能分属于不同的链段。高分子链具有柔性的原因可以归结于链段的运动。

在分子链长度相等的情况下,能够独立运动的链段数量越多,链段的长度就越短,链柔性就越好。理想刚性链:单键内旋转非常困难,整个大分子成为一个独立运动单元。柔性链:假定大分子链上没有任何阻碍或者分子之间没有干扰,单键内旋转完全自由,每个单键都可以独立运动,成为链段。第33页,共121页,星期六,2024年,5月

由于分子内旋转是导致分子链柔顺性的根本原因,而高分子链的内旋转又受其分子结构的制约,因而分子链的柔顺性与其分子结构密切相关。7.2.4影响链柔性的因素

影响因素内因:近程结构外因:外界条件、T、外力等第34页,共121页,星期六,2024年,5月1.主链的结构

若主链全由C-C单键组成,内旋转容易,链柔顺性好柔性顺序:Si-O﹥C-N﹥C-O﹥C-Ce.g:O(CH2)OCO(CH2)6CO聚酯涂料SiO()nCH3CH3有机硅橡胶4

若主链有杂原子时,由于杂原子上无氢原子或取代基,和/或组成主链的原子半径比较大,键长键角较大,从而内旋转较容易而更为柔顺。

第35页,共121页,星期六,2024年,5月

主链含有芳环或杂环时,内旋转困难,链柔性差,强度大,耐热性较高。e.g:PPOPC均做耐高温工程材料第36页,共121页,星期六,2024年,5月

主链中含有孤立C=C双键时,链柔顺性好,如聚丁二烯、聚异戊二烯等都是柔顺性很好的橡胶。

因此,在主链中引入不能内旋转的芳环、芳杂环等环状结构,可提高分子链的刚性。聚乙炔聚苯

如果主链全部为芳环或共轭双键,由于这种大共轭体系中π电子云没有轴对称性,不能内旋转,所以分子链刚性极大,如聚苯(撑)、聚乙炔等。第37页,共121页,星期六,2024年,5月

取代基的极性越大,分子间相互作用力越大,单键内旋转越困难,分子链柔性越差。如:2.取代基的结构基团极性:

-CN>Cl>CH3>H柔性排列:-CH2-CHCN-<-CH2-CHCl-<-CH2-CHCH3-<-CH2-CH2-第38页,共121页,星期六,2024年,5月取代基的数量越多,沿分子链排布距离越小,分子链内旋转越困难,柔性越差。

若分子链中取代基对称分布则链柔性>不对称分布第39页,共121页,星期六,2024年,5月

非极性取代基的体积越大,内旋转位阻越大,柔顺性越差。但侧基如果是柔性的,侧基的增大使分子间距离增加,会使分子间作用力减小,链柔性反而会得到提高。

第40页,共121页,星期六,2024年,5月3.支化和交联

支链短对链柔性有一定改善作用;支链长,则阻碍链的内旋转,柔顺性下降。

交联结构,当交联度不大时(含硫2-3%的橡胶)对链的柔顺性影响不大,但是交联度达到一定程度(如含硫30%以上)则大大影响链的柔顺性。第41页,共121页,星期六,2024年,5月4.外界因素的影响a.温度的影响:温度越高,高分子链柔性越好b.与外力的作用慢:外力增加慢,链的柔性增加快:外力增加快,链的柔性降低实例:塑料制品、橡胶制品等冬天硬、夏天软。第42页,共121页,星期六,2024年,5月7.3高分子链的构象统计分子尺寸均方末端距内旋转容易链段短线团小末端距小对末端距平方后再平均,就是“均方末端距”。末端距:线形高分子链一端至另一端的直线距离。第43页,共121页,星期六,2024年,5月线形链支化链均方旋转半径:从大分子链的质量中心到各个链段的质量中心的距离平方后的平均值广义表征:“均方旋转半径”第44页,共121页,星期六,2024年,5月高分子的聚集态结构:

指高分子链之间的排列和堆砌结构。7.4聚合物聚集态结构凝聚态结构晶态结构非晶态结构取向态结构液晶态结构第45页,共121页,星期六,2024年,5月材料性能合成方法成型加工方法聚集态结构聚集态结构不同,性能不同。聚集态结构取决于两个方面:一是高分子的链结构(即合成方法),二是成型加工方法及外界条件。第46页,共121页,星期六,2024年,5月范德华力氢键定向力

诱导力

色散力由电很负性强的原子X上的氢原子H与另外一个电负性强、半径小的原子Y以一种特殊的偶极作用结合成氢键(X-H···Y)。7.4.1聚合物分子间作用力第47页,共121页,星期六,2024年,5月

氢键的形成可以是分子内,也可以是分子间。分子间形成氢的高聚物有聚丙烯酸、聚酰胺等。氢键的存在使聚合物分子间作用力大大增加,还可以促使大分子链之间形成规则紧密地排列,有利于形成结晶结构。O-HO-CC~CCCCCC~O-HO-C~CCCCCC~CO-HO-CH-OOC-OH-OC-OH-OC-聚丙烯酸分子间的氢键氢键第48页,共121页,星期六,2024年,5月

聚酰胺分子间的氢键示意图N-HO=C~~N-HO=C~N-HO=C~N-HO=C~~N-HO=C~N-HO=C~N-HO=C~~N-HO=C~N-HO=C~第49页,共121页,星期六,2024年,5月

以上各种分子间作用力共同起作用才使相同或不同分子聚集成聚合物;而聚合物的一些特性,如沸点、熔点、气化点、熔融热、溶解度、粘度和强度都受到分子间作用力的影响;因为分子间作用力与分子量有关,而高分子的分子量一般都很大,致使分子间的作用力的加和超过化学键的键能,所以一般聚合物不存在气态。所以我们不能用单一作用能来表示高分子链间的相互作用能,而用宏观量:7.4.2聚合物分子间作用力表征或内聚能内聚能密度第50页,共121页,星期六,2024年,5月

把1mol的液体或固体分子汽化(转移到其分子引力范围之外)所需要的能量。

∆E=∆Hv-RT∆Hv--摩尔汽化热RT--转化为气体所做的膨胀功内聚能:

CED=∆E/VmVm--摩尔体积内聚能密度:单位体积的内聚能第51页,共121页,星期六,2024年,5月当CED<300J/m3,非极性聚合物分子间主要是色散力,较弱;再加上分子链的柔顺好,使这些材料易于变形实于弹性--橡胶当CED>400J/m3,分子链上含有强的极性基团或者形成氢键,因此分子间作用力大,机械强度好,耐热性好,再加上分子链结构规整,易于结晶取向--纤维

当CED在300~400J/m3,分子间作用力适中--塑料

CED越大,分子间作用力越大;

CED越小,分子间作用力越小第52页,共121页,星期六,2024年,5月7.5高聚物的晶态结构高聚物的结晶形态稀溶液,缓慢降温单晶球晶浓溶液或熔体冷却纤维状晶体挤出、吹塑、拉伸浓溶液、低温度结晶极高压力下熔融结晶树枝状晶伸直链晶体

聚合物的结晶与小分子晶体不同,一般具有晶体不完善(晶区、非晶区及中间结构共存)、熔点范围宽及结晶速度慢等特点。根据结晶条件不同,又可形成多种形态的晶体。7.5.1聚合物的结晶形态第53页,共121页,星期六,2024年,5月

单晶是具有一定几何外形的薄片状晶体。一般聚合物的单晶只能从极稀溶液(质量浓度小于0.01wt%)中缓慢结晶而成。175℃从0.003%的溶液中缓慢结晶i-PS单晶螺旋生长稀溶液,慢降温PE单晶1.单晶(折叠链片晶)第54页,共121页,星期六,2024年,5月

聚合物结晶最常见的结晶形态,是一种圆球状的晶体,尺寸较大,一般是由结晶性聚合物从浓溶液中析出或由熔体冷却时形成的。球晶在正交偏光显微镜下可观察到其特有的黑十字消光或带同心圆的黑十字消光图象。2.球晶聚戊二酸丙二醇酯等规聚苯乙烯聚乙烯球晶的偏光显微镜照片第55页,共121页,星期六,2024年,5月3.树枝状晶

溶液浓度较大(一般为0.01~0.1%),温度较低的条件下结晶时,高分子的扩散成为结晶生长的控制因素,此时在突出的棱角上要比其它邻近处的生长速度更快,从而倾向于树枝状地生长,最后形成树枝状晶体。PEPEO第56页,共121页,星期六,2024年,5月4.纤维状晶体

聚合物在结晶过程中受到搅拌、拉伸或受到剪切力作用时,高分子链会沿着外力方向伸展,并且平行排列,形成纤维状晶态。该晶体是由交错连接的伸展高分子链所构成,其长度大大超过高分子链的长度。聚乙烯纤维状晶第57页,共121页,星期六,2024年,5月5.串晶

在溶液中强烈搅拌得到,是纤维状晶体和片晶的复合体。折叠链片晶纤维状晶第58页,共121页,星期六,2024年,5月6.伸直链晶体

聚合物在高温高压(如挤出)下熔融结晶,在晶体中,高分子链完全伸展,平行规整排列,晶片厚度于分子链长度相当。高温高压下得到的PE伸直链晶体第59页,共121页,星期六,2024年,5月思考:让PE在下列条件下结晶,各生成什么样的晶体?

1)从极稀的溶液中缓慢结晶

2)从熔体中冷却结晶

3)在极高的压力下熔融挤出

4)在熔体中强烈搅拌下结晶。第60页,共121页,星期六,2024年,5月

晶态结构模型是指描述大分子链在晶区中的排列,基本模型有两种:缨状胶束模型和折叠链模型。7.5.2聚合物的晶态结构模型1.缨状胶束模型:认为结晶聚合物中晶区与非晶区互相穿插,同时存在。在晶区分子链相互平行排列成规整的结构,而在非晶区分子链的堆砌完全无序。该模型也称两相结构模型。结晶聚合物的缨状胶束模型第61页,共121页,星期六,2024年,5月

2.折叠链模型:

认为在聚合物晶体中,高分子链是以折叠的形式堆砌起来的。伸展的分子倾向于相互聚集在一起形成链束,分子链规整排列的有序链束构成聚合物结晶的基本单元,这些规整的有序链束表面能大自发地折叠成带状结构,进一步堆砌成晶片。

折叠链模型有邻近规整折叠链模型及近邻松散折叠链模型。

第62页,共121页,星期六,2024年,5月3.插线板模型(flory提出)

结晶时分子链基本来不及做规整的折叠,而只能对局部链段作必要的调整,以便排入晶格,即分子链完全无规进入晶片相邻排列的两段分子不是同一个分子的链段。在多层片晶中,一个分子链可以从一个晶区通过非晶区进入另一个晶片中。结晶聚合物得插线板模型第63页,共121页,星期六,2024年,5月分子链轴方向链带发展方向高分子链折叠链带晶片(或针状晶体)单晶球晶结晶过程第64页,共121页,星期六,2024年,5月

高分子结晶总是不完全的,即晶区和非晶区同时存在。因而结晶高分子实际上只是半结晶聚合物(semi-crystallinepolymer)。结晶度:就是结晶的程度,即晶区部分所占的质量分数(质量结晶度)或者体积分数(体积结晶度),以ƒcw

、ƒcv

表示。

式中:c和a分别表示晶区和非晶区X-ray衍射法密度法红外光谱法量热法(DSC法)测定方法7.6聚合物的结晶度第65页,共121页,星期六,2024年,5月1.密度法-最常用的最为方便的方法测试依据:晶区密度大于非晶区密度,结晶聚合物中两相共存,密度介于两者之间(或者晶区的比容小于非晶区的比容)。在一定温度下,结晶聚合物的比容具有加和关系:那么就有第66页,共121页,星期六,2024年,5月

试样密度使用密度测量装置(密度梯度管)测量,晶区密度(完全结晶物密度)可有晶胞参数计算得到,非晶区密度则从可熔体的比容-温度曲线外推到测量温度得到。从手册或文献中也可以查到相关数据。与此类似,从密度的线性加和出发有第67页,共121页,星期六,2024年,5月2.差式扫描量热法(DifferentialscanningcalorimetryDSC)

DSC根据结晶聚合物在熔融过程中的热效应去求得结晶度的方法。典型的DSC曲线图△H由测定试样熔融峰面积来测量,△H0由手册和文献查出。△H—聚合物试样的熔融热△H0—完全结晶的试样的熔融热结晶度计算第68页,共121页,星期六,2024年,5月3.X射线衍射法(Wide-angleX-raydiffraction,WAXD)X射线衍射法测得的曲线测定依据:总的衍射强度等于晶区和非晶区衍射强度之和。Ac—晶区衍射峰的面积Aa—非晶区散射峰的面积K—校正因子不同的方法测定的结晶度结果没有可比性。第69页,共121页,星期六,2024年,5月

结晶度对聚合物性能的影响

结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。但结晶使高弹性、断裂伸长率、抗冲击强度等性能下降,对以弹性、韧性为主要使用性能的材料是不利的。如结晶会使橡胶失去弹性,发生爆裂。1、力学性能2、光学性能一般结晶聚合物呈乳白色、不透明,结晶度减小,透明度增加,非晶聚合物通常是透明的。第70页,共121页,星期六,2024年,5月

将熔融态的PE和聚苯乙烯淬冷到室温,PE是半透明的,而PS是透明的?PE薄膜PS思考:第71页,共121页,星期六,2024年,5月

聚合物结晶过程能否进行,必须具备两个条件:

1.聚合物的分子链具有结晶能力,分子链需具有化学和几何结构的规整性,这是结晶的必要条件。

—热力学条件

2.给予充分的条件-适宜的温度和充分的时间.

—动力学条件7.7聚合物的结晶行为和结晶动力学第72页,共121页,星期六,2024年,5月1、分子链的对称性大分子链的化学结构对称性越好,就越易结晶。例如:聚乙烯主链上全部是碳原子,结构对称,结晶能达95%;聚四氟乙烯分子结构的对称性好,具有良好的结晶能力;聚氯乙烯氯原子破坏了结构的对称性,失去了结晶能力;聚偏二氯乙烯具有结晶能力。主链含有杂原子的聚合物,如聚甲醛、聚酯、聚醚、聚酰胺、聚砜等,虽然对称性有所降低,但仍属对称结构,都具有不同程度的结晶能力。7.7.1聚合物结构与结晶能力的关系第73页,共121页,星期六,2024年,5月2、链的规整性

主链含不对称碳原子分子链,如具有空间构型的规整性,则仍可结晶,否则就不能结晶。自由基聚合制得的聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯等为非晶聚合物,但由定向聚合得到的等规或间规立构聚合物则可结晶。二烯类聚合物:全顺式或全反式结构的聚合物有结晶能力;顺式构型聚合物的结晶能力一般小于反式构型的聚合物。第74页,共121页,星期六,2024年,5月3、共聚物的结晶能力无规共聚物:

1.两种共聚单体的均聚物有相同类型的晶体结构,则能结晶,而晶胞参数随共聚物的组成而发生变化。

2.若两种共聚单元的均聚物有不同的晶体结构,但其中一种组分比例高很多时,仍可结晶;而两者比例相当时,则失去结晶能力,如乙丙共聚物。嵌段共聚物:

各嵌段基本上保持着相对独立性,能结晶的嵌段可形成自己的晶区。例如:聚酯—聚丁二烯—聚酯嵌段共聚物中,聚酯段仍可结晶,起物理交联作用,而使共聚物成为良好的热塑性弹性体。第75页,共121页,星期六,2024年,5月影响结晶能力的其它因素:

1.分子链的柔性:链柔性好的聚合物利于结晶,如聚对苯二甲酸乙二酯的结晶能力要比脂肪族聚酯低

2.支化:高压聚乙烯由于支化,其结晶能力要低于低压法制得的线性聚乙烯

3.交联:轻度交联聚合物尚能结晶,高度交联则完全失去结晶能力。

4.分子间力:分子间的作用力大,会使分子链柔性下降,从而影响结晶能力;但分子间形成氢键时,则有利于晶体结构的稳定。第76页,共121页,星期六,2024年,5月判断下列几组化合物的结晶难易程度1.PE,PP,PVC,PS(无规)PE>PP>PVC>PSPE链结构简单,对称规整,结晶能力最强;取代基极性越大,分子间作用力越大,链柔性越差,链柔性越差越不利于结晶,取代基极性Cl>CH3,因此结晶能力PP>PVC;无规立构的PS分子链结构缺乏对称性和规整性,任何条件下都不能结晶。2.聚对苯二甲酸乙二醇酯,聚间苯二甲酸乙二醇酯,聚己二酸乙二酯聚己二酸乙二酯>聚对苯二甲酸乙二醇酯>聚间苯二甲酸乙二醇酯脂肪族聚酯柔性好,利于结晶;聚间苯二甲酸乙二醇酯对称性不好,结晶能力差。3.尼龙6,尼龙66,尼龙1010尼龙66>尼龙6>尼龙1010氢键密度大,分子间作用力大,有利于结晶。第77页,共121页,星期六,2024年,5月

7.7.2聚合物结晶速率的测定

聚合物的结晶过程是其分子链以晶核为中心做规则有序排列的过程,因此聚合物的结晶过程包含晶核生成和晶体生长两个阶段。结晶速度应包含成核速度、晶粒的生长速度和由它们两者所决定的全程结晶速度。

测定成核速度:主要用偏光显微镜直接观察单位时间内形成晶核的数目。测定晶粒的生长速度:用偏光显微镜法直接测定球晶的线增长速度。全程结晶速度(或结晶总速度):可用膨胀计法、光学解偏振法、差示扫描量热法(DSC法)来测定。第78页,共121页,星期六,2024年,5月膨胀计法原理:聚合物在结晶过程中,从无序的非晶态变成高度有序的晶态,密度会变大,因此一定质量的聚合物样品在结晶过程中,随结晶度的增加体积会发生收缩,通过测量体积随结晶时间的变化可以研究结晶过程。膨胀计法是研究等温结晶过程的经典方法。第79页,共121页,星期六,2024年,5月具体方法/实验步骤/聚合物试样和惰性跟踪液体加入膨胀计中,加热到熔点以上,全部熔融装置至于恒温水浴中等温结晶,待液面稳定达到热平衡记下起始液面高度h0ATTENTION液面一开始下降表示反应开始,随后,每隔5min读一次毛细管体积变化至实验结束,以(ht-h∞)/(h0-h∞)对t最图,就可得到等温结晶曲线ht和h∞分别表示液柱t时刻和最终的高度第80页,共121页,星期六,2024年,5月聚合物的结晶过程包含晶核生成和晶体生长两个阶段,晶核生成包括均相成核和异相成核。(a)异相成核(b)均相成核7.7.3Avrami方程用于聚合物的结晶过程异相成核:以聚合物中某些外来杂质,未完全熔融的残余结晶为中心,吸附熔体中的高分子链有序排列形成晶核。均相成核:在高分子熔体冷却过程中,部分分子链依靠热运动形成有序排列的链束形成晶核。第81页,共121页,星期六,2024年,5月

式中:V—聚合物的比容,K—全程结晶速率常数,

n—Avrami指数,它与成核的机理和晶粒生长的方式有关,其值为晶粒的生长维数和成核过程的时间维数之和。

均相成核:由熔体中高分子链依靠热运动而形成有序排列的链束为晶核,因而有时间的依赖性,时间维数为1;

异相成核:由外界引入的杂质或自身残留的晶种形成,它与时间无关,故其时间维数为零。Avrami方程聚合物的等温结晶过程可用Avrami方程来描述:第82页,共121页,星期六,2024年,5月半结晶时间结晶速率常数

结晶速率常数和半结晶时间的倒数都可以表示结晶速率的快慢。对Avrami方程两次取对数得到

以等式左边对lgt作图,可以得到一条直线,斜率为n,截距为lgK,即可以了解成核机理、生长方式及结晶速度等。另外还可以得到第83页,共121页,星期六,2024年,5月

结晶过程主要分为晶核生成和晶体生长两个阶段,因此结晶速度应包含成核速度、晶粒的生长速度和由它两者所决定的全程结晶速度。7.7.3结晶速率与温度的关系影响结晶速率的因素主要包括:结晶温度分子链结构分子量杂质、溶剂、外力第84页,共121页,星期六,2024年,5月成核过程:均相成核宜于在稍低的温度下发生。因为温度过高,分子的热运动过于剧烈,晶核不易形成,已形成的晶核也不稳定,易被分子热运动所破坏。因而随着温度的降低,均相成核的速度趋于增大。但当温度降低到一定程度后,连段运动趋于冻结,成核速率迅速下降。异相成核对温度的依赖性没有这么强烈,可以在较高温度下发生。结晶温度对结晶速率的影响第85页,共121页,星期六,2024年,5月晶粒的生长过程主要取决于链段向晶核的扩散和规整堆砌的速度,随着温度的降低,熔体的粘度增大,不利于链段的扩散运动,因而温度升高有利于晶粒的生长速度。总结晶速率在Tg-Tm之间可以结晶,结晶速度在低温时受晶体生长过程控制,在高温时受成核过程控制,存在一个最大结晶速率温度。第86页,共121页,星期六,2024年,5月第87页,共121页,星期六,2024年,5月1、分子链结构链的结构越简单,对称性越高,立构规整性越好,取代基的空间位阻越小,分子链的柔性越好则结晶速度就越快,此时聚合物结晶能力也越强。2、相对分子质量同一种聚合物随相对分子质量的增大,由于熔体的粘度增大,使链段向晶核表面扩散变得困难,因而使结晶速率降低。7.7.4影响结晶速率的其他因素第88页,共121页,星期六,2024年,5月3、杂质

杂质的存在对聚合物的结晶过程有很大影响,有的可阻碍结晶的进行,有的则能加速结晶。惰性杂质降低结晶分子的浓度,导致结晶速率下降,成核杂质起到晶核的作用,使结晶速率大大加快。4、溶剂溶剂有时可以诱导聚合物结晶,尤其是对一些分子链刚性大、结晶速率较慢的聚合物,如将PET浸入适当的有机溶剂中,薄膜很快会因为结晶而变得不透明。第89页,共121页,星期六,2024年,5月5、压力一般结晶性聚合物的熔体在熔点附近是很难发生结晶的,但是如将熔体置于高压下,就会引起结晶。例如:聚乙烯的熔点为135℃,在227℃加压到480MPa条件下结晶8小时,则可发生结晶,其结晶度为97%,密度为0.994g/ml。6、应力

对于一些通常条件下难于结晶的聚合物,在应力的作用下却可发生结晶。例如:天然橡胶常温下结晶需几十年,但在拉伸条件下只要几秒钟就能结晶,除去外力,结晶则又熔融。第90页,共121页,星期六,2024年,5月非晶态结构是一个比晶态更为普遍存在的聚集形态,不仅有大量完全非晶态的聚合物,而且即使在晶态聚合物中也存在非晶区,而且将结晶聚合物加热到熔点以上,它们也处于非晶态了。非晶态结构包括玻璃态、橡胶态、粘流态(或熔融态)及结晶聚合物中的非晶区。

7.8高分子的非晶态结构

1.无规线团模型

2.两相模型

非晶态结构模型第91页,共121页,星期六,2024年,5月1.无规线团模型(flory提出)要点:非晶态结构完全是由无序的无规线团组成验证实验:X-ray衍射实验证明晶区高分子链段规整排列——晶区的有序结构中子小角散射实验证明非晶区是完全无序结构无规线团模型第92页,共121页,星期六,2024年,5月2.两相球粒模型(折叠链缨状胶束模型)要点:

非晶态结构存在着一定程度的局部有序。实验测得许多高聚物的非晶和结晶密度比约为0.85~0.96,而按分子链成无规线团形态的完全无序的模型计算<0.65,这种密度比的偏高,说明非晶高聚物非晶区中包含规整排列部分。非晶态结构由折叠链构成的粒子相(有序区)组成由无规线团构成粒间相(无序区)组成验证实验:两相球粒模型第93页,共121页,星期六,2024年,5月

某些物质的结晶在熔融或溶解之后,虽然失去固态物质的刚性,成为具有流动性的液态物质,却仍然部分保持晶态物质的有序排列,从而在物理性质上呈现各向异性,形成一种兼有晶体和液体部分性质的过渡状态,称为液晶态,这种物质称为液晶。7.9高分子的液晶态结构晶体三维有序液态的无序液晶第94页,共121页,星期六,2024年,5月聚合物要形成液晶,必须满足以下条件:(i)分子链具有刚性或一定刚性,并且分子的长度与宽度之比R>>1,即分子是棒状或接近于棒状的构象。(ii)分子间链上含有苯环或氢键等结构;(iii)在刚性结构两端一般带有一定柔性部分,利于液晶的流动。高分子液晶形成条件第95页,共121页,星期六,2024年,5月高分子液晶有三种不同的结构类型:近晶型、向列型和胆甾型。近晶型(i)近晶型:棒状分子通过垂直于分子长轴方向的强相互作用,互相平行排列成层状结构。分子长轴垂直于层面,每个层片内分子排列保持大量二维固体有序性,棒状分子只能在层内活动,不能穿越各层之间。高分子液晶的分类第96页,共121页,星期六,2024年,5月向列型(ii)向列型:棒状分子虽然也平行排列,但长短不一,不分层次,只有一维有序性,在外力作用下发生流动时,棒状分子易沿流动方向取向,并可在流动取向中互相穿越。这类液晶具有很大的流动性。第97页,共121页,星期六,2024年,5月(iii)胆甾型:棒状分子分层平行排列,在每个单层内分子排列与向列型相似,相邻两层中分子长轴依次有规则地扭转一定角度,经过多层扭转形成了螺旋面结构,分子长轴在旋转3600后复原。两个取向相同的分子层之间的距离称为胆甾型液晶的螺距。因胆甾相类液晶从胆甾醇类物质中发现故名。这类液晶有特殊光学性质,如:特高旋光性,具有彩虹般的颜色。胆甾型第98页,共121页,星期六,2024年,5月

高分子液晶按其液晶原所处的位置分为主链液晶(主链由液晶原和柔性链节组成)和侧链液晶(主链柔性,侧链刚性晶原)两类。液晶原:通常把分子链上满足形成液晶相要求的、具有一定长径比的刚性结构单一称为液晶原。高分子液晶的结构和性能按液晶原所在位置分类主链型液晶侧链型液晶第99页,共121页,星期六,2024年,5月高分子液晶的应用1、液晶显示技术

将高分子液晶薄膜夹在两块导电玻璃板之间,在施加适当电压的点上,高分子变为各向异性的液晶,不透明,如果电压以某种图形加在玻璃板上,便产生图象。如数码显示、电视屏幕、广告牌等。第100页,共121页,星期六,2024年,5月LCD–Liquidcrystaldisplay第101页,共121页,星期六,2024年,5月

2、高性能材料

液晶高分子具有高强度高模量,且耐热性能好。用来制造强度很高的军事制品和宇航制品。第一个实现工业化的液晶高分子是聚对苯二甲酰对苯二胺(1972年,Kevlar纤维)。

第102页,共121页,星期六,2024年,5月Kevlar–PPTA–Poly(p-phenyleneterephthalamie)第103页,共121页,星期六,2024年,5月ApplicationsofKevlar第104页,共121页,星期六,2024年,5月取向(orientation):在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。

7.10高分子的取向态结构

未取向的聚合物材料是各向同性的,即各个方向上的性能相同。而取向后的聚合物材料是各向异性的,即方向不同,性能不同。一般情况下,材料的力学性能在取向方向上显著增强,而垂直于取向方向上则明显下降。第105页,共121页,星期六,2024年,5月

相同点高分子链排列有序化取向是使高分子链“一维”或“二维”有序化。取向后的结构是外力强迫形成的相对稳定或不稳定的结构。

结晶是使高分子链“三维空间”有序化。结晶后的结构是稳定的结构。

取向与结晶的相互关系能结晶肯定能取向,但能取向不一定能结晶。

取向与结晶的异同第106页,共121页,星期六,2024年,5月聚合物取向分为两大类

单轴取向:材料在一维方向上受到拉伸实现单轴取向。如纤维纺丝纤维的单轴拉伸第107页,共121页,星期六,2024年,5月

双轴取向:材料受到两个相互垂直方向的拉伸,实现二维方向的双轴取向。如薄膜制品薄膜的双轴拉伸取向:薄膜挤压吹塑机第108页,共121页,星期六,2024年,5月取向的机理1、存在链段与高分子链两种取向单元,链段在玻璃化转变温度以上(即高弹态)即可进行,高分子链的取向需要各个链段协同作用,在粘

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论