版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西新余市高三下学期第五次调研考试新高考数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.三棱锥中,侧棱底面,,,,,则该三棱锥的外接球的表面积为()A. B. C. D.2.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.3.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.4.已知等差数列中,若,则此数列中一定为0的是()A. B. C. D.5.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能6.已知正项等比数列中,存在两项,使得,,则的最小值是()A. B. C. D.7.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.8.设a,b∈(0,1)∪(1,+∞),则"a=b"是"logA.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是()A. B. C. D.10.设,,则()A. B. C. D.11.已知集合,,若,则()A.4 B.-4 C.8 D.-812.若的二项展开式中的系数是40,则正整数的值为()A.4 B.5 C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.14.在中,角,,所对的边分别边,且,设角的角平分线交于点,则的值最小时,___.15.已知向量=(-4,3),=(6,m),且,则m=__________.16.设函数,,其中.若存在唯一的整数使得,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.18.(12分)如图,已知,分别是正方形边,的中点,与交于点,,都垂直于平面,且,,是线段上一动点.(1)当平面,求的值;(2)当是中点时,求四面体的体积.19.(12分)已知,,为正数,且,证明:(1);(2).20.(12分)已知函数.(1)若,且,求证:;(2)若时,恒有,求的最大值.21.(12分)已知直线:与抛物线切于点,直线:过定点Q,且抛物线上的点到点Q的距离与其到准线距离之和的最小值为.(1)求抛物线的方程及点的坐标;(2)设直线与抛物线交于(异于点P)两个不同的点A、B,直线PA,PB的斜率分别为,那么是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.22.(10分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题,侧棱底面,,,,则根据余弦定理可得,的外接圆圆心三棱锥的外接球的球心到面的距离则外接球的半径,则该三棱锥的外接球的表面积为点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径公式是解答的关键.2、A【解析】
利用等比数列的性质可得,即可得出.【详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【点睛】本题考查了等比中项的求法,属于基础题.3、D【解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.4、A【解析】
将已知条件转化为的形式,由此确定数列为的项.【详解】由于等差数列中,所以,化简得,所以为.故选:A【点睛】本小题主要考查等差数列的基本量计算,属于基础题.5、B【解析】
根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.6、C【解析】
由已知求出等比数列的公比,进而求出,尝试用基本不等式,但取不到等号,所以考虑直接取的值代入比较即可.【详解】,,或(舍).,,.当,时;当,时;当,时,,所以最小值为.故选:C.【点睛】本题考查等比数列通项公式基本量的计算及最小值,属于基础题.7、D【解析】
把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.8、A【解析】
根据题意得到充分性,验证a=2,b=1【详解】a,b∈0,1∪1,+∞,当"a=b当logab=log故选:A.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.9、A【解析】
根据几何概率计算公式,求出中间小三角形区域的面积与大三角形面积的比值即可.【详解】在中,,,,由余弦定理,得,所以.所以所求概率为.故选A.【点睛】本题考查了几何概型的概率计算问题,是基础题.10、D【解析】
集合是一次不等式的解集,分别求出再求交集即可【详解】,,则故选【点睛】本题主要考查了一次不等式的解集以及集合的交集运算,属于基础题.11、B【解析】
根据交集的定义,,可知,代入计算即可求出.【详解】由,可知,又因为,所以时,,解得.故选:B.【点睛】本题考查交集的概念,属于基础题.12、B【解析】
先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,∴,∴(舍)或.【点睛】本题考查二项展开式问题,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
观察八卦中阴线和阳线的情况为3线全为阳线或全为阴线各一个,还有6个是1阴2阳和1阳2阴各3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。【详解】八卦中阴线和阳线的情况为3线全为阳线的一个,全为阴线的一个,1阴2阳的3个,1阳2阴的3个。抽取的两卦中共2阳4阴的所有可能情况是一卦全阴、另一卦2阳1阴,或两卦全是1阳2阴。∴从8个卦中任取2卦,共有种可能,两卦中共2阳4阴的情况有,所求概率为。故答案为:。【点睛】本题考查古典概型,解题关键是确定基本事件的个数。本题不能受八卦影响,我们关心的是八卦中阴线和阳线的条数,这样才能正确地确定基本事件的个数。14、【解析】
根据题意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【详解】因为,则,由余弦定理得:,当且仅当时取等号,又因为,,所以.故答案为:.【点睛】本题考查余弦定理和正弦定理的应用,以及基本不等式求最值,考查计算能力.15、8.【解析】
利用转化得到加以计算,得到.【详解】向量则.【点睛】本题考查平面向量的坐标运算、平面向量的数量积、平面向量的垂直以及转化与化归思想的应用.属于容易题.16、【解析】
根据分段函数的解析式画出图像,再根据存在唯一的整数使得数形结合列出临界条件满足的关系式求解即可.【详解】解:函数,且画出的图象如下:因为,且存在唯一的整数使得,故与在时无交点,,得;又,过定点又由图像可知,若存在唯一的整数使得时,所以,存在唯一的整数使得所以.根据图像可知,当时,恒成立.综上所述,存在唯一的整数使得,此时故答案为:【点睛】本题主要考查了数形结合分析参数范围的问题,需要根据题意分别分析定点右边的整数点中为满足条件的唯一整数,再数形结合列出时的不等式求的范围.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】
(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的城市数量为.由以上数据完善列联表如下图,业绩突出城市业绩不突出城市总计外卖甲4060100外卖乙5248100总计92108200且的观测值为,∴有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①样本平均数,故==,,的数学期望,②由分层抽样知,则100个城市中每月订单数在区间内的有(个),每月订单数在区间内的有(个),若不开展营销活动,则一个月的利润为(万元),若开展营销活动,则一个月的利润为(万元),这100个城市中开展营销活动比不开展每月多盈利100万元.【点睛】本题考查了频率分布直方图与频率分布表的应用,完善列联表并计算的观测值作出判断,分层抽样的简单应用,综合性强,属于中档题.18、(1).(2)【解析】
(1)利用线面垂直的性质得出,进而得出,利用相似三角形的性质,得出,从而得出的值;(2)利用线面垂直的判定定理得出平面,进而得出四面体的体积,计算出,,即可得出四面体的体积.【详解】(1)因为平面,平面,所以又因为,都垂直于平面,所以又,分别是正方形边,的中点,且,所以.(2)因为,分别是正方形边,的中点,所以又因为,都垂直于平面,平面,所以因为平面,所以平面所以,四面体的体积,所以.【点睛】本题主要考查了线面垂直的性质定理的应用,以及求棱锥的体积,属于中档题.19、(1)证明见解析;(2)证明见解析.【解析】
(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【详解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【点睛】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.20、(1)见解析;(2).【解析】
(1)利用导数分析函数的单调性,并设,则,,将不等式等价转化为证明,构造函数,利用导数分析函数在区间上的单调性,通过推导出来证得结论;(2)构造函数,对实数分、、,利用导数分析函数的单调性,求出函数的最小值,再通过构造新函数,利用导数求出函数的最大值,可得出的最大值.【详解】(1),,所以,函数单调递增,所以,当时,,此时,函数单调递减;当时,,此时,函数单调递增.要证,即证.不妨设,则,,下证,即证,构造函数,,所以,函数在区间上单调递增,,,即,即,,且函数在区间上单调递增,所以,即,故结论成立;(2)由恒成立,得恒成立,令,则.①当时,对任意的,,函数在上单调递增,当时,,不符合题意;②当时,;③当时,令,得,此时,函数单调递增;令,得,此时,函数单调递减...令,设,则.当时,,此时函数单调递增;当时,,此时函数单调递减.所以,函数在处取得最大值,即.因此,的最大值为.【点睛】本题考查利用导数证明不等式,同时也考查了利用导数求代数式的最值,构造新函数是解答的关键,考查推理能力,属于难题.21、(1),(1,2);(2)存在,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度金融科技债券发行与专业担保服务协议3篇
- 2025年度行政人事部劳动合同在职期间员工薪酬调整与绩效考核标准2篇
- 建立小学生个人环保记录册的游戏化实施方案
- 2025年度租赁合同:飞机租赁及运营服务协议3篇
- 家庭教育在职业发展中的重要性
- 二零二五年度建筑工地专业植筋加固服务合同
- 基于农业大数据的产业链整合研究
- 2024版全新国际贸易合同模板1
- 二零二五年度物业管理服务与社区家政服务合同3篇
- 2025年度金融行业反欺诈软件产品销售合同3篇
- 2025年山东水发集团限公司社会招聘高频重点提升(共500题)附带答案详解
- 《湖南省房屋建筑和市政工程消防质量控制技术标准》
- 施工现场环境因素识别、评价及环境因素清单、控制措施
- 2024年医药行业年终总结.政策篇 易联招采2024
- 《工业园区节水管理规范》
- 儿科护士述职报告2024
- 警校生职业生涯规划
- 意识障碍患者的护理诊断及措施
- 股权投资协议的风险控制
- 酒店微笑服务培训
- 浙江省嘉兴市2023-2024学年七年级上学期语文期末试卷(含答案)
评论
0/150
提交评论