分数应用题知识点总结(7篇)_第1页
分数应用题知识点总结(7篇)_第2页
分数应用题知识点总结(7篇)_第3页
分数应用题知识点总结(7篇)_第4页
分数应用题知识点总结(7篇)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分数应用题知识点总结(7篇)分数与除法

【知识点】:

理解分数与除法的关系:被除数除数=(除数不为0)。

分数的分母不能是0。因为在除法中,0不能做除数,因此根据分数与除法的关系,分数中的分母相当于除法中的除数,所以分母也不能是0。

运用分数与除法的关系解决实际问题。用分数来表示两数相除的商。

根据分数与除法的关系把假分数化成带分数的方法。

用分子除以分母,把所得的商写在带分数的整数位置上,余数写在分数部分的分子上,仍用原来的分母作分母。

把带分数化成假分数的方法。(两种)

把带分数分成整数与真分数的和的形式,把整数化成用真分数的分母作分母的假分数,再加上原来的真分数,就可以把带分数转化成假分数。

将整数与分母相乘的积加上分子作分子,分母不变。

分数基本性质

【知识点】:

理解分数的基本性质。

分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。

联系分数与除法的关系以及商不变的规律,来理解分数的基本性质。

分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。

运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

找最大公因数

【知识点】:

理解公因数和最大公因数的意义。

两数公有的因数是它们的公因数,其中最大的一个是它们的最大公因数。

找两个数的公因数和最大公因数的方法。

运用找因数的方法先分别找到两个数各自的因数,再找出两个数的因数中相同的因数,这些数就是两个数的公因数;再看看公因数中最大的是几,这个数就是两个数的最大公因数。

会找分子和分母的最大公因数。

补充【知识点】:

其他找最大公因数的方法。

找两个数的公因数和最大公因数,可以先找出两个数中较小的数的因数,再看看这些因数中有哪些也是较大的数的因数,那么这些数就是这两个数的公因数。其中最大的就是这两个数的最大公因数。

例如:找15和50的公因数和最大公因数:

可以先找出15的因数:1,3,5,15。再判断4个数中,哪几个也是50的因数,只有1和5,1和5就是15和50的公因数。5就是它们的最大公因数。

如果两个数是不同的质数,那么这两个数的公因数只有1。

如果两个数是连续的自然数,那么这两个数的公因数只有1。

如果两个数具有倍数关系,那么较小的数就是这两个数的最大公因数。

也可适当的把短除法求公因数介绍给学生。(据学生实际情况而定。)

4与所有奇数的最大公因数是1;4与4的倍数的最大公因数是4。

约分

【知识点】:

理解约分的含义。

把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫做约分。

理解最简分数的含义。

像这样分子、分母公因数只有1了,不能再约分了,这样的分数是最简分数。

掌握约分的方法。

约分的方法一般有两种,一种是用两个数的公因数一个一个去除,另一种是直接用两个数的最大公因数去除。

补充【知识点】:

比较分数大小时,分母相同的、分子相同的可以直接比较,有些时候分子分母都不相同可以采用约分后进行比较的方法。

例如:○

找最小公倍数

【知识点】:

理解公倍数和最小公倍数的含义。

两个数公有的倍数叫做这两个数的公倍数,其中最小的一个,叫做最小公倍数。

找两个数的公倍数和最小公倍数的方法。

先找出两个数各自的倍数(限制一定的范围内),再找出公有的倍数,最为两个数的公倍数,看看这些公倍数中最小的是几,这个数就是两个数的最小公倍数。

两个数公倍数的个数是无限的,因此只有最小公倍数没有最大的公倍数。

补充【知识点】:

其他找公倍数和最小公倍数的方法。

找两个数的公倍数和最小公倍数,可以先找出两个数中较大的数的倍数(限制一定的范围内),再看看这些倍数中有哪些也是较小的数的倍数,那么这些数就是这两个数的公倍数。其中最小的就是这两个数的最小公倍数。

例如:找6和9的公倍数和最小公倍数。(50以内)可以先找出9的倍数(50以内)有:9,18,27,36,45,再从这些数中找出6的倍数18,36,18和36就是6和9的公倍数,18是最小公倍数。

如果两个数是不同的质数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数是连续的自然数,那么这两个数的最小公倍数是两个数的乘积。

如果两个数具有倍数关系,那么较大的数就是这两个数的最小公倍数。

也可适当的把短除法求最小公倍数的方法介绍给学生。(据学生实际情况而定。)

分数的大小

【知识点】:

理解通分的含义。

把分母不相同的分数化成和原来分数相等、并且分母相同的分数,这个过程叫作通分。

通分的两个要点:

和原来分数相等。

分母相同的数字。

分数大小比较。

同分母分数相比较,分子越大分数越大。

同分子分数相比较,分母越小分数越大。

分子分母都不相同的分数相比较的方法。

用通分的方法把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小。

是把两个分数化成分子相同的分数,再比较大小。

补充【知识点】:

通分一般以最小公倍数作分母。

数学与交通

相遇

【知识点】:

分析简单实际问题中的数量关系。

路程=速度时间

用方程解决简单的实际问题。

强调列方程解应用题的步骤:

(1)找到题中的等量关系式

(2)解设所求量为x

(3)根据等量关系式列出相应的方程

(4)解答方程,注意结果无单位名称。

(5)检验做答。

补充【知识点】:

速度=路程时间时间=路程速度

旅游费用

【知识点】:

会利用已有的知识,依据实际情况给出较经济的方案。

掌握用列表法解决问题。

看图找关系

【知识点】:

能读懂一些用来表示数量关系的图表,能从图表中获取有关信息,体会图表的直观性。

结合实际问题情境,分析量与量之间的关系。

根据图的变化确定或描述行为、事件的变化。

分数应用题知识点总结第2篇

分数乘法知识点:分数乘法的意义

1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。

2、分数乘分数是求一个数的.几分之几是多少。

分数乘法知识点:分数乘法的计算法则

1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。

分数乘法知识点:规律:(乘法中比较大小时)

1、一个数(0除外)乘大于1的数,积大于这个数。

2、一个数(0除外)乘小于1的数(0除外),积小于这个数。

3、一个数(0除外)乘1,积等于这个数。

分数乘法知识点:分数混合运算的运算顺序和整数的运算顺序相同。

先乘除,后加减,

同级运算从左到右运算,

如果有括号要先算括号

分数乘法知识点:整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bc

分数应用题知识点总结第3篇

1、分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数,在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的读法:

读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

3、分数的写法:

先写分数线,再写分母,最后写分子,按照整数的写法来写。

4、比较分数的大小:

⑴分母相同的分数,分子大的那个分数就大。

⑵分子相同的分数,分母小的那个分数就大。

⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。

⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。

5、分数的分类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

⑴真分数:分子比分母小的分数叫做真分数,真分数小于1。

⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

6、分数和除法的关系及分数的基本性质

⑴除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。

⑵由于分数和除法有密切的关系,根据除法中“商不变”的'性质可得出分数的基本性质。

⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。

7、约分和通分

⑴分子、分母是互质数的分数,叫做最简分数。

⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。

⑶约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

⑸通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

8、倒数

⑴乘积是1的两个数互为倒数。

⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

⑶1的倒数是1,0没有倒数

分数应用题知识点总结第4篇

1、分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2、分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

3、分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

4、比较分数的大小:

⑴分母相同的分数,分子大的那个分数就大。

⑵分子相同的分数,分母小的那个分数就大。

⑶分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。

⑷如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。

5、分数的分类

按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数

⑴真分数:分子比分母小的分数叫做真分数。真分数小于1。

⑵假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

⑶带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

6、分数和除法的关系及分数的基本性质

⑴除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。

⑵由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。

⑶分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。

7、约分和通分

⑴分子、分母是互质数的分数,叫做最简分数。

⑵把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。

⑶约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。

⑷把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

⑸通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

8、倒数

⑴乘积是1的两个数互为倒数。

⑵求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

⑶1的倒数是1,0没有倒数

9、认识真分数、假分数和带分数

真分数:分数的分子小于分母。真分数都比1小

假分数:分数的分子大于或等于分母。假分数等于或大于1

带分数:由整数和真分数组成的分数。

10、假分数、带分数和整数之间的互化。

假分数——整数。假分数的分子是分母的整倍数,分子除以分母所得的商就是整数。

整数——假分数。任何整数都可以写成假分数,由要求的分母作分母,分母与整数的乘积作分子。

假分数——带分数。由分子除以分母,商是带分数的整数部分,余数是带分数的分子。

带分数——假分数。分母不变,整数部分乘分母再加上带分数的分子作为假分数的分子。

11、认识最小公倍数

几个数公有的倍数叫这几个数的公倍数,其中最小的那个公倍数叫这几个数的最小公倍数

涉及到异分母分数比较大小或计算时,需要先通分。如何找到两个异分母的最小公倍数呢?需要考虑一下几种情况:

当两个数是互质数的时候,两个数的最小公倍数就是两个数的乘积。

两个数的最大公因数就是1

当两个数有倍数关系时,比较大的数是这两个数的最小公倍数。

比较小的数是两个数的最大公因数。

其他情况可以利用短处法找到两个数的最小公倍数。

12、无论是分数之间的互化或是分数计算。最终结果都要让分数化为最简分数。

当分母分数相加减时,通分时的分母如果是最小公倍数,那么最终的结果应该是一个最简分数。所以,尽量通分时用最小公倍数作分数的分母。

分数应用题知识点总结第5篇

1、分数乘法:

分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2.分数乘法的计算法则

分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

3.分数乘法意义

分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘整数:

数形结合、转化化归

5.倒数:

乘积是1的两个数叫做互为倒数。

6.分数的倒数

找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

7.整数的倒数

找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

8.小数的倒数

普通算法:找一个小数的倒数,例如,把化成分数,即1/4,再把1/4这个分数的分子和分母交换位置,把原来的`分子做分母,原来的分母做分子,则是4/1。

9.用1计算法:

也可以用1去除以这个数,例如,1/等于4,所以的倒数4,因为乘积是1的两个数互为倒数。分数、整数也都使用这种规律。

10.分数除法:

分数除法是分数乘法的逆运算。

11.分数除法计算法则:

甲数除以乙数(0除外),等于甲数乘乙数的倒数。

12.分数除法的意义:

与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

13.分数除法应用题:

先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。

分数应用题知识点总结第6篇

1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c

6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论