版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省珠海市2025届数学高一下期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四边形中,,且·=0,则四边形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形2.甲、乙、丙、丁4名田径选手参加集训,将挑选一人参加400米比赛,他们最近10次测试成绩的平均数和方差如下表;根据表中数据,应选哪位选手参加比赛更有机会取得好成绩?()甲乙丙丁平均数59575957方差12121010A.甲 B.乙 C.丙 D.丁3.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升4.已知扇形的周长为8,圆心角为2弧度,则该扇形的面积为()A. B. C. D.5.直线l:的倾斜角为()A. B. C. D.6.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}7.在区间上随机选取一个数,则满足的概率为()A. B. C. D.8.已知函数在区间(1,2)上是增函数,则实数a的取值范围是()A.(0,+∞) B.(0,1) C.(0,1] D.(﹣1,0)9.在中,角,,所对的边分别是,,,,,,则()A.或 B.C. D.10.已知函数,那么下列式子:①;②;③;④;其中恒成立的是()A.①② B.②③ C.①②④ D.②③④二、填空题:本大题共6小题,每小题5分,共30分。11.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积(弦矢矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为米,半径等于米的弧田,则弧所对的弦的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.12.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=513.对于任意实数x,不等式恒成立,则实数a的取值范围是______14.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.15.函数的值域为__________.16..已知,若是以点O为直角顶点的等腰直角三角形,则的面积为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列前项和为,满足,(1)证明:数列是等差数列,并求;(2)设,求证:.18.如图,在直三棱柱中,,为的中点,为的中点.(1)求证:平面;(2)求证:.19.已知,,与的夹角是(1)计算:①,②;(2)当为何值时,与垂直?20.已知等差数列满足,.(1)求的通项公式;(2)各项均为正数的等比数列中,,,求的前项和.21.求适合下列条件的直线方程:经过点,倾斜角等于直线的倾斜角的倍;经过点,且与两坐标轴围成一个等腰直角三角形。
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由可得四边形为平行四边形,由·=0得四边形的对角线垂直,故可得四边形为菱形.【详解】∵,∴与平行且相等,∴四边形为平行四边形.又,∴,即平行四边形的对角线互相垂直,∴平行四边形为菱形.故选A.【点睛】本题考查向量相等和向量数量积的的应用,解题的关键是正确理解有关的概念,属于基础题.2、D【解析】
由平均数及方差综合考虑得结论.【详解】解:由四位选手的平均数可知,乙与丁的平均速度快;再由方差越小发挥水平越稳定,可知丙与丁稳定,故应选丁选手参加比赛更有机会取得好成绩.故选:.【点睛】本题考查平均数与方差,熟记结论是关键,属于基础题.3、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.4、A【解析】
利用弧长公式、扇形的面积计算公式即可得出.【详解】设此扇形半径为r,扇形弧长为l=2r则2r+2r=8,r=2,∴扇形的面积为r=故选A【点睛】本题考查了弧长公式、扇形的面积计算公式,属于基础题.5、C【解析】
由直线的斜率,又,再求解即可.【详解】解:由直线l:,则直线的斜率,又,所以,即直线l:的倾斜角为,故选:C.【点睛】本题考查了直线倾斜角的求法,属基础题.6、D【解析】
根据并集定义计算.【详解】由题意A∪B={x|-2<x<3}.故选D.【点睛】本题考查集合的并集运算,属于基础题.7、D【解析】
在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.8、C【解析】
由题意可得在上为减函数,列出不等式组,由此解得的范围.【详解】∵函数在区间上是增函数,∴函数在上为减函数,其对称轴为,∴可得,解得.故选:C.【点睛】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.9、C【解析】
将已知代入正弦定理可得,根据,由三角形中大边对大角可得:,即可求得.【详解】解:,,由正弦定理得:故选C.【点睛】本题考查了正弦定理、三角形的边角大小关系,考查了推理能力与计算能力.10、A【解析】
根据正弦函数的周期性及对称性,逐项判断,即可得到本题答案.【详解】由,得,所以的最小正周期为,即,故①正确;由,令,得的对称轴为,所以是的对称轴,不是的对称轴,故②正确,③不正确;由,令,得的对称中心为,所以不是的对称中心,故④不正确.故选:A【点睛】本题主要考查正弦函数的周期性以及对称性.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
在中,由题意可知:,弧长为,即可以求出,则求得的值,根据题意可求矢和弦的值及弦长,利用公式可以完成.【详解】如上图在中,可得:,可以得:矢=所以:弧田面积(弦矢矢2)=所以填写(1).(2).【点睛】本题是数学文化考题,扇形为载体的新型定义题,求弦长属于简单的解三角形问题,而作为第二空,我们首先知道公式中涉及到了“矢”,所以我们必须把“矢”的定义弄清楚,再借助定义求出它的值,最后只是简单代入公式计算即能完成.12、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.13、【解析】
对a分类讨论,利用判别式,即可得到结论.【详解】(1)a﹣2=0,即a=2时,﹣4<0,恒成立;(2)a﹣2≠0时,,解得﹣2<a<2,∴﹣2<a≤2故答案为:.【点睛】对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.14、-0.1【解析】
分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.15、【解析】
本题首先可通过三角恒等变换将函数化简为,然后根据的取值范围即可得出函数的值域.【详解】因为,所以.【点睛】本题考查通过三角恒等变换以及三角函数性质求值域,考查二倍角公式以及两角和的正弦公式,考查化归与转化思想,是中档题.16、4【解析】由得;由是以为直角顶点的等腰直角三角形,则,.由得.又,则,所以又,则,则,所以所以;则则的面积为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)见解析.【解析】(1)由可得,当时,,两式相减可是等差数列,结合等差数列的通项公式可求进而可求(2)由(1)可得,利用裂项相消法可求和,即可证明.试题分析:(1)(2)试题解析:(1)由知,当即所以而故数列是以1为首项,1为公差的等差数列,且(2)因为所以考点:数列递推式;等差关系的确定;数列的求和18、(1)见解析(2)见解析【解析】
(1)连、相交于点,证明四边形为平行四边形,得到,证明平面(2)证明平面推出【详解】证明:(1)如图,连、相交于点,,,,,,,∴四边形为平行四边形,,平面,平面,平面,…(2)连因为三棱柱是直三棱柱,底面,平面,,,,,,平面,平面,.【点睛】本题考查了线面平行,线线垂直,线面垂直,意在考查学生的空间想象能力.19、(1)①;②;(2).【解析】
利用数量积的定义求解出的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果.【详解】由已知得:(1)①②(2)若与垂直,则即:,解得:【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.20、(1);(2).【解析】试题分析:(1)求{an}的通项公式,可先由a2=2,a5=8求出公差,再由an=a5+(n-5)d,求出通项公式;(2)设各项均为正数的等比数列的公比为q(q>0),利用等比数列的通项公式可求首项及公比q,代入等比数列的前n项和公式可求Tn.试题解析:(1)设等差数列{an}的公差为d,则由已知得∴a1=0,d=2.∴an=a1+(n-1)d=2n-2.(2)设等比数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024折叠门技术创新与市场推广合作合同3篇
- 2025版酒店节能型装修材料采购及施工合同2篇
- 2025土地流转合同样本
- 二零二五年RoHS环保协议范本与材料追溯体系3篇
- 2024年瑜伽馆股权投资及管理服务合同3篇
- 2025版IT系统集成与外包服务合同范例2篇
- 2025年皮手套及皮革制衣着附件项目合作计划书
- 2024年苗木交易合同范例
- 2024建设工程劳务项目内部承包合同
- 2024年风力发电设备防水堵漏施工合同
- 六年级语文上册期末试卷及完整答案
- 贵州省铜仁市2023-2024学年高一上学期期末考试 生物 含解析
- 军队文职(新闻专业)招聘考试(重点)题库200题(含答案解析)
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 2024-2020年上海高考英语作文试题汇编 (解读及范文)
- 上海市2023-2024学年六年级上学期期末科学试卷(含答案)
- 非物质文化遗产主题班会之英歌舞课件
- 港口经济学智慧树知到期末考试答案章节答案2024年上海海事大学
- 北京市东城区2023-2024学年八年级上学期期末生物试题
- ISO28000:2022供应链安全管理体系
- 毒理学基础期末考试试题整理大全附答案
评论
0/150
提交评论