版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
肥西县2025届高一下数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量,,则向量与的夹角为()A. B. C. D.2.甲、乙两名运动员分别进行了5次射击训练,成绩如下:甲:7,7,8,8,1;乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用,表示,方差分别用,表示,则()A., B.,C., D.,3.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.24.某学校礼堂有30排座位,每排有20个座位,一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生,这里运用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样 D.分层抽样5.在中,内角所对的边分别为.若,则角的值为()A. B. C. D.6.在中,,,,则B等于()A.或 B. C. D.以上答案都不对7.在平行四边形中,,若点满足且,则A.10 B.25 C.12 D.158.已知点A(1,0),B(0,1),C(–2,–3),则△ABC的面积为A.3 B.2 C.1 D.9.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.3610.在空间中,有三条不重合的直线,,,两个不重合的平面,,下列判断正确的是A.若∥,∥,则∥ B.若,,则∥C.若,∥,则 D.若,,∥,则∥二、填空题:本大题共6小题,每小题5分,共30分。11.如图是一正方体的表面展开图.、、都是所在棱的中点.则在原正方体中:①与异面;②平面;③平面平面;④与平面形成的线面角的正弦值是;⑤二面角的余弦值为.其中真命题的序号是______.12.适合条件的角的取值范围是______.13.若为锐角,,则__________.14.在平行四边形中,=,边,的长分别为2,1.若,分别是边,上的点,且满足,则的取值范围是______.15.已知等差数列的前项和为,且,,则;16.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)求的值;(2)求的值.18.等差数列的各项均为正数,,的前项和为,为等比数列,,且.(1)求与;(2)求数列的前项和.19.请解决下列问题:(1)已知,求的值;(2)计算.20.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.21.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(Ⅱ)求甲、乙两人同在第3号车站下车的概率;(Ⅲ)求甲、乙两人在不同的车站下车的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由条件有,利用公式可求夹角.【详解】,.又又向量与的夹角的范围是向量与的夹角为.故选:C2、D【解析】
分别计算出他们的平均数和方差,比较即得解.【详解】由题意可得,,,.故,.故选D【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.3、B【解析】
画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.4、C【解析】抽名学生分了组(每排为一组),每组抽一个,符合系统抽样的定义故选5、C【解析】
根据正弦定理将边化角,可得,由可求得,根据的范围求得结果.【详解】由正弦定理得:本题正确选项:【点睛】本题考查正弦定理边角互化的应用,涉及到两角和差正弦公式、三角形内角和、诱导公式的应用,属于基础题.6、C【解析】试题分析:由正弦定理得,得,结合得,故选C.考点:正弦定理.7、C【解析】
先由题意,用,表示出,再由题中条件,根据向量数量积的运算,即可求出结果.【详解】因为点满足,所以,则故选C.【点睛】本题主要考查向量数量积的运算,熟记平面向量基本定理以及数量积的运算法则即可,属于常考题型.8、A【解析】
由两点式求得直线的方程,利用点到直线距离公式求得三角形的高,由两点间距离公式求得的长,从而根据三角形面积公式可得结果.【详解】∵点A(1,0),B(0,1),∴直线AB的方程为x+y–1=0,,又∵点C(–2,–3)到直线AB的距离为,∴△ABC的面积为S=.故选A.【点睛】本题主要考查两点间的距离公式,点到直线的距离公式、三角形面积公式以及直线方程的应用,意在考查综合运用所学知识解答问题的能力,属于中档题.9、C【解析】
两圆外切时,有三条公切线.【详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.10、C【解析】
根据空间中点、线、面的位置关系的判定与性质,逐项判定,即可求解,得到答案.【详解】由题意,A中,若∥,∥,则与可能平行、相交或异面,故A错误;B中,若,,则与c可能平行,也可能垂直,比如墙角,故B错误;C中,若,∥,则,正确;D中,若,,∥,则与可能平行或异面,故D错误;故选C.【点睛】本题主要考查了线面位置关系的判定与证明,其中解答中熟记空间中点、线、面的位置关系,以及线面位置关系的判定定理和性质定理是解答的关键,着重考查了推理与论证能力,属于中档试题.二、填空题:本大题共6小题,每小题5分,共30分。11、①②④【解析】
将正方体的表面展开图还原成正方体,利用正方体中线线、线面以及面面关系,以及直线与平面所成角的定义和二面角的定义进行判断.【详解】根据条件将正方体进行还原如下图所示:对于命题①,由图形可知,直线与异面,命题①正确;对于命题②,、分别为所在棱的中点,易证四边形为平行四边形,所以,,平面,平面,平面,命题②正确;对于命题③,在正方体中,平面,由于四边形为平行四边形,,平面.、平面,,.则二面角所成的角为,显然不是直角,则平面与平面不垂直,命题③错误;对于命题④,设正方体的棱长为,易知平面,则与平面所成的角为,由勾股定理可得,,在中,,即直线与平面所成线面角的正弦值为,命题④正确;对于命题⑤,在正方体中,平面,且,平面.、平面,,,所以,二面角的平面角为,在中,由勾股定理得,,由余弦定理得,命题⑤错误.故答案为①②④.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面关系的判断以及线面角、二面角的计算,判断时要从空间中有关线线、线面、面面关系的平行或垂直的判定或性质定理出发进行推导,在计算空间角时,则应利用空间角的定义来求解,考查推理能力与运算求解能力,属于中等题.12、【解析】
根据三角函数的符号法则,得,从而求出的取值范围.【详解】,的取值范围的解集为.故答案为:【点睛】本题主要考查了三角函数符号法则的应用问题,是基础题.13、【解析】因为为锐角,,所以,.14、【解析】
以A为原点AB为轴建立直角坐标系,表示出MN的坐标,利用向量乘法公式得到表达式,最后计算取值范围.【详解】以A为原点AB为轴建立直角坐标系平行四边形中,=,边,的长分别为2,1设则当时,有最大值5当时,有最小值2故答案为【点睛】本题考查了向量运算和向量乘法的最大最小值,通过建立直角坐标系的方法简化了技巧,是解决向量复杂问题的常用方法.15、1【解析】
若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.16、【解析】
根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)利用同角三角函数的平方关系可求出的值,然后再利用同角三角函数的商数关系可求出的值;(2)在分式分子和分母中同时除以,将所求分式转化为含的分式求解,代值计算即可.【详解】(1),,因此,;(2)原式.【点睛】本题考查同角三角函数的商数关系求值,同时也考查了弦化切思想的应用,解题时要熟悉弦化切所适用的基本情形,考查计算能力,属于基础题.18、(1);(2)【解析】试题分析:(1)的公差为,的公比为,利用等比数列的通项公式和等差数列的前项和公式,由列出关于的方程组,解出的值,从而得到与的表达式.(2)根据数列的特点,可用错位相减法求它的前项和,由(1)的结果知,两边同乘以2得由(1)(2)两式两边分别相减,可转化为等比数列的求和问题解决.试题解析:(1)设的公差为,的公比为,则为正整数,,依题意有,即,解得或者(舍去),故.4分(2).6分,,两式相减得8分,所以12分考点:1、等差数列和等比数列;2、错位相减法求特数列的前项和.19、(1)(2)3【解析】
(1)分子分母同时除以即可得解;(2)由对数的运算求解即可.【详解】解:(1)由,分子分母同时除以可得,原式.(2)原式.【点睛】本题考查了三角求值中的齐次式求值问题,重点考查了对数的运算,属基础题.20、(1)2;(2)【解析】
(1)设,利用余弦定理列方程可得:,解方程即可(2)利用(1)中结果即可判断为等边三角形,即可求得中边上的高为,再利用的面积是即可求得:,结合余弦定理可得:,再利用正弦定理可得:,问题得解【详解】(1)在中,设,则,由余弦定理得:即:解之得:,即边的长为2.(2)由(1)得为等边三角形,作于,则∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广州市房地产买卖合同
- 仓储物流电线电缆施工合同
- 2025建设工程承包合同的
- 2025工程建设监理的委托合同
- 模具技术转让合同范本
- 茶山租赁合同:茶艺表演合作计划
- 电影院班组施工合同
- 软件开发招投标及合同管理技巧
- 智能交通信号系统网络安装合同
- 2025配送站销售代理合同模版
- 六年级语文上册期末试卷及完整答案
- 贵州省铜仁市2023-2024学年高一上学期期末考试 生物 含解析
- 军队文职(新闻专业)招聘考试(重点)题库200题(含答案解析)
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 2024-2020年上海高考英语作文试题汇编 (解读及范文)
- 上海市2023-2024学年六年级上学期期末科学试卷(含答案)
- 非物质文化遗产主题班会之英歌舞课件
- 港口经济学智慧树知到期末考试答案章节答案2024年上海海事大学
- 北京市东城区2023-2024学年八年级上学期期末生物试题
- ISO28000:2022供应链安全管理体系
- 毒理学基础期末考试试题整理大全附答案
评论
0/150
提交评论