2025届四川省重点中学高一下数学期末调研试题含解析_第1页
2025届四川省重点中学高一下数学期末调研试题含解析_第2页
2025届四川省重点中学高一下数学期末调研试题含解析_第3页
2025届四川省重点中学高一下数学期末调研试题含解析_第4页
2025届四川省重点中学高一下数学期末调研试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省重点中学高一下数学期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角所对的边分别为,若,且,则的形状是()A.锐角三角形 B.钝角三角形 C.等腰直角三角形 D.不确定2.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.3.已知均为锐角,,则=A. B. C. D.4.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个5.在,内角所对的边分别为,且,则()A. B. C. D.16.如图,为正三角形,,,则多面体的正视图(也称主视图)是A. B. C. D.7.函数的大致图象是()A. B.C. D.8.函数的图象与函数的图象的交点个数为()A.3 B.2 C.1 D.09.从甲、乙、丙三人中,任选两名代表,甲被选中的概率为()A. B. C. D.10.已知函数在时取最大值,在是取最小值,则以下各式:①;②;③可能成立的个数是()A.0 B.1 C.2 D.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知{}是等差数列,是它的前项和,且,则____.12.函数的值域为________.13.已知x,y满足,则的最大值为________.14.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.15.设函数的最小值为,则的取值范围是___________.16.设数列的前项和,若,,则的通项公式为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.18.某网站推出了关于扫黑除恶情况的调查,调查数据表明,扫黑除恶仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注扫黑除恶的人群中随机选出人,并将这人按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)求出的值;(2)求这人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位).19.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.20.已知函数当时,求函数的最小值.21.已知数列中,,前项的和为,且满足数列是公差为的等差数列.(1)求数列的通项公式;(2)若恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

通过正弦定理可得可得三角形为等腰,再由可知三角形是直角,于是得到答案.【详解】因为,所以,所以,即.因为,所以,又因为,所以,所以,故的形状是等腰直角三角形.【点睛】本题主要考查利用正弦定理判断三角形形状,意在考查学生的分析能力,计算能力,难度中等.2、D【解析】

设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.3、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.4、B【解析】①;②;③;④,所以正确的为①②,选B.5、C【解析】

直接利用余弦定理求解.【详解】由余弦定理得.故选C【点睛】本题主要考查余弦定理解三角形,意在考查学生对该知识的理解掌握水平,属于基础题.6、D【解析】

为三角形,,平面,

且,则多面体的正视图中,

必为虚线,排除B,C,

说明右侧高于左侧,排除A.,故选D.7、C【解析】

去掉绝对值将函数化为分段函数的形式后可得其图象的大体形状.【详解】由题意得,所以其图象的大体形状如选项C所示.故选C.【点睛】解答本题的关键是去掉函数中的绝对值,将函数化为基本函数后再求解,属于基础题.8、B【解析】由已知g(x)=(x-2)2+1,所以其顶点为(2,1),又f(2)=2ln2∈(1,2),可知点(2,1)位于函数f(x)=2lnx图象的下方,故函数f(x)=2lnx的图象与函数g(x)=x2-4x+5的图象有2个交点.9、D【解析】

采用列举法写出总事件,再结合古典概型公式求解即可【详解】被选出的情况具体有:甲乙、甲丙、乙丙,甲被选中有两种,则故选:D10、A【解析】

由余弦函数性质得,(),解出后,计算,可知三个等式都不可能成立.【详解】由题意,(),解得,,,,三个都不可能成立,正确个数为1.故选A.【点睛】本题考查余弦函数的图象与性质,解题时要注意对中的整数要用不同的字母表示,否则可能出现遗漏,出现错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据等差数列的性质得,由此得解.【详解】解:由题意可知,;同理。故.故答案为:【点睛】本题考查了等差数列的性质,属于基础题.12、【解析】

利用反三角函数的单调性即可求解.【详解】函数是定义在上的增函数,函数在区间上单调递增,,,函数的值域是.故答案为:【点睛】本题考查了反三角函数的单调性以及反三角函数值,属于基础题.13、6【解析】

作出不等式组所表示的平面区域,结合图象确定目标函数的最优解,即可得到答案.【详解】由题意,作出不等式组所表示的平面区域,如图所示,因为目标函数,可化为直线,当直线过点A时,此时目标函数在轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为.故答案为:6.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.14、【解析】

由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.15、.【解析】

确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16、【解析】

已知求,通常分进行求解即可。【详解】时,,化为:.时,,解得.不满足上式.∴数列在时成等比数列.∴时,.∴.故答案为:.【点睛】本题主要考查了数列通项式的求法:求数列通项式常用的方法有累加法、定义法、配凑法、累乘法等。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的问题,同时考查古典概型的问题,熟记古典概型的概率公式,以及均值的求法即可,属于常考题型.18、(1)0.035(2)平均数为:41.5岁中位数为:42.1岁【解析】

(1)根据频率之和为1,结合题中条件,直接列出式子计算,即可得出结果;(2)根据每组的中间值乘该组的频率再求和,即可得出平均数;根据中位数两边的频率之和相等,即可求出中位数.【详解】(1)由题意可得:,解得;(2)由题中数据可得:岁,设中位数为,则,∴岁.【点睛】本题主要考查完善频率分布直方图,以及由频率分布直方图求平均数,中位数等,熟记频率的性质,以及平均数与中位数的计算方法即可,属于常考题型.19、(1)(2)【解析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.20、当时,,当时,,当时,.【解析】

将函数的解析式化成二次函数的形式,然后把作为整体,并根据的取值范围,结合求二次函数在闭区间上的最值的方法进行求解即可.【详解】由题意得.∵,∴.当,即时,则当,即时,函数取得最小值,且;当,即时,则当,即时,函数取得最小值,且;当,即时,则当,函数取得最小值,且.综上可得.【点睛】解答本题的关键是将问题转化为二次函数的问题求解,求二次函数在闭区间上的最值时要结合抛物线的开口方向和对称轴与区间的位置关系求解,体现了数形结合的应用,属于基础题.21、(1);(2).【解析】

(1)根据题意求出数列的通项公式,可解出,从而得出数列的通项公式;(2)将数列的通项公式裂项,利用裂项法求出,由得出,然后利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论