版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆维吾尔自治区新疆生产建设兵团二中2025届数学高一下期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,等边的边长为2、为的中点,且也是等边三角形,若以点为中心按逆时针方向旋转后到达的位置,则在转动过程中的取值范围是()A. B. C. D.2.已知是常数,那么“”是“等式对任意恒成立”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件3.对于任意实数,下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则4.函数的对称中心是()A. B. C. D.5.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.6.已知圆与交于两点,其中一交点的坐标为,两圆的半径之积为9,轴与直线都与两圆相切,则实数()A. B. C. D.7.对任意实数x,表示不超过x的最大整数,如,,关于函数,有下列命题:①是周期函数;②是偶函数;③函数的值域为;④函数在区间内有两个不同的零点,其中正确的命题为()A.①③ B.②④ C.①②③ D.①②④8.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.9.函数的单调递增区间是()A. B. C. D.10.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像可由函数的图像至少向右平移________个单位长度得到.12.已知,,则______.13.若,且,则的最小值为_______.14.若,则的值为_______.15.某住宅小区有居民万户,从中随机抽取户,调查是否安装宽带,调查结果如下表所示:宽带租户业主已安装未安装则该小区已安装宽带的居民估计有______户.16.己知函数,有以下结论:①的图象关于直线轴对称②在区间上单调递减③的一个对称中心是④的最大值为则上述说法正确的序号为__________(请填上所有正确序号).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.已知函数.(1)求的单调递增区间;(2)求不等式的解集.19.已知等差数列中,与的等差中项为,.(1)求的通项公式;(2)令,求证:数列的前项和.20.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D121.已知直线l:x+3y﹣2=1.(1)求与l垂直,且过点(1,1)直线方程;(2)求圆心为(4,1),且与直线l相切的圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
设,,则,则,将其展开,运用向量的数量积的定义,化简得到,再由余弦函数的性质,即可得到范围.【详解】设,,则,则,由于,则,则.故选:D【点睛】本题考查平面向量的数量积的定义,考查三角函数的化简和求最值,考查运算能力,属于中档题.2、B【解析】
由辅助角公式结合条件得出、的值,由结合同角三角函数得出、的值,于此可得出结论.【详解】由可得或,由辅助角公式,其中,.因此,“”是“等式对任意恒成立”的必要非充分条件,故选B.【点睛】本题考查必要不充分条件的判断,考查同角三角函数的基本关系以及辅助角公式的应用,考查推理能力,属于中等题.3、C【解析】
根据是任意实数,逐一对选项进行分析即得。【详解】由题,当时,,则A错误;当,时,,则B错误;可知,则有,因此C正确;当时,有,可知C错误.故选:C【点睛】本题考查判断正确命题,是基础题。4、C【解析】,设是奇函数,其图象关于原点对称,而函数的图象可由的图象向右平移一个单位,向下平移两个单位得到,所以函数的图象关于点对称,故选C.5、B【解析】
根据求出的范围,再由区间长度比即可得出结果.【详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【点睛】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.6、A【解析】
根据圆的切线性质可知连心线过原点,故设连心线,再代入,根据方程的表达式分析出是方程的两根,再根据韦达定理结合两圆的半径之积为9求解即可.【详解】因为两切线均过原点,有对称性可知连心线所在的直线经过原点,设该直线为,设两圆与轴的切点分别为,则两圆方程为:,因为圆与交于两点,其中一交点的坐标为.所以①,②.又两圆半径之积为9,所以③联立①②可知是方程的两根,化简得,即.代入③可得,由题意可知,故.因为的倾斜角是连心线所在的直线的倾斜角的两倍.故,故.故选:A【点睛】本题主要考查了圆的方程的综合运用,需要根据题意列出对应的方程,结合韦达定理以及直线的斜率关系求解.属于难题.7、A【解析】
根据的表达式,结合函数的周期性,奇偶性和值域分别进行判断即可得到结论.【详解】是周期函数,3是它的一个周期,故①正确.,结合函数的周期性可得函数的值域为,则函数不是偶函数,故②错误.,故在区间内有3个不同的零点,故④错误.故选:A【点睛】本题考查了取整函数综合问题,考查了学习综合分析,转化与划归,数学运算的能力,属于难题.8、C【解析】
首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.9、A【解析】
先求出所有的单调递增区间,然后与取交集即可.【详解】因为令得:所以的单调递增区间是因为,所以即函数的单调递增区间是故选:A【点睛】求形如的单调区间时,一般利用复合函数的单调性原理“同增异减”来求出此函数的单调区间,当时,需要用诱导公式将函数转化为.10、D【解析】
利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.12、【解析】
由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.13、【解析】
将变换为,展开利用均值不等式得到答案.【详解】若,且,则时等号成立.故答案为【点睛】本题考查了均值不等式,“1”的代换是解题的关键.14、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.15、【解析】
计算出抽样中已安装宽带的用户比例,乘以总人数,求得小区已安装宽带的居民数.【详解】抽样中已安装宽带的用户比例为,故小区已安装宽带的居民有户.【点睛】本小题主要考查用样本估计总体,考查频率的计算,属于基础题.16、②④【解析】
根据三角函数性质,逐一判断选项得到答案.【详解】,根据图像知:①的图象关于直线轴对称,错误②在区间上单调递减,正确③的一个对称中心是,错误④的最大值为,正确故答案为②④【点睛】本题考查了三角函数的化简,三角函数的图像,三角函数性质,意在考查学生对于三角函数的综合理解和应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(3)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–3.由a1=–7得d=3.所以{an}的通项公式为an=3n–4.(3)由(1)得Sn=n3–8n=(n–4)3–1.所以当n=4时,Sn取得最小值,最小值为–1.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18、(1),;(2),【解析】
(1)由余弦函数单调区间的求法,解不等式即可得解;(2)解三角不等式即可得解.【详解】解:解:(1)令,,解得,,故的单调递增区间为,.(2)因为,所以,即,所以,,解得,.故不等式的解集为,.【点睛】本题考查了余弦函数单调区间的求法,重点考查了三角不等式的解法,属基础题.19、(1)(2)见解析【解析】
(1)利用和表示出和,解方程求得和;根据等差数列通项公式求得结果;(2)整理出的通项公式,利用裂项相消法可求得,根据可证得结论.【详解】(1)设数列的公差为则,解得:(2)由(1)知:,即【点睛】本题考查等差数列通项公式的求解、裂项相消法求解数列的前项和;关键是能够将需求和的数列的通项裂为可前后抵消的形式,加和可求得结果,属于常考题型.20、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D121、(1)3x﹣y﹣2=1;(2)(x﹣4)2+(y﹣1)2.【解析】
(1)根据两直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度艺术品买卖合同标的及质量标准
- 2024年度网络广告发布合同
- 2024年度茶楼与旅行社合作合同
- 2024年度企业品牌形象重塑与市场营销策划合同
- 2024年度汽车经销商授权合同2篇
- 道路与桥梁工程毕业设计计算书
- 2024年度航天科技项目研发与投资合同
- 2024年度租赁合同标的物的保险责任
- 2024中国电建西北勘测设计研究院限公司招聘15人(陕西)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信全渠道运营中心校园招聘易考易错模拟试题(共500题)试卷后附参考答案
- 《1980年代“现代派”论争中的现代主义与现实主义问题》
- 材料成型及控制工程基础知识单选题100道及答案解析
- 2024年保育员(中级)考试题库(含答案)
- 环保项目设备采购实施方案
- 数学-江西省稳派上进联考2024-2025学年2025届高三上学期11月调研测试试题和答案
- 2024-2025学年北京十三中分校八年级(上)期中数学试卷
- 湖南财政经济学院《证券投资学》2022-2023学年第一学期期末试卷
- 《喜迎建队日 争做好少年》主题班会教案3篇
- 2024-2025学年鲁教版(五四制)八年级数学上册期中测试题
- (高级)增材制造设备操作员技能鉴定理论考试题库(浓缩500题)
- 高盛-比亚迪:全球汽车市场上的新兴领先企业-2024-10-企业研究
评论
0/150
提交评论