版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古赤峰第四中学2025届数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式中不正确的是().A. B. C. D.2.已知,,则的值域为()A. B.C. D.3.在ABC中,.则的取值范围是()A.(0,] B.[,) C.(0,] D.[,)4.在三棱锥中,平面,,,,,则三棱锥外接球的体积为()A. B. C. D.5.已知角α的终边过点P(2sin60°,-2cos60°),则sinα的值为()A. B. C.- D.-6.已知数列满足,,,则的值为()A.12 B.15 C.39 D.427.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)8.一个几何体的三视图如图所示,则几何体的体积是()A. B. C. D.19.已知变量,满足约束条件则取最大值为()A. B. C.1 D.210.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.1二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是____________.12.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.13.设数列的前n项和为,关于数列,有下列三个命题:(1)若既是等差数列又是等比数列,则;(2)若,则是等差数列:(3)若,则是等比数列这些命题中,真命题的序号是__________________________.14.设,,,,,为坐标原点,若、、三点共线,则的最小值是_______.15.中,内角,,所对的边分别是,,,且,,则的值为__________.16.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,,为椭圆上一点,且垂直于轴,连结并延长交椭圆于另一点,设.(1)若点的坐标为,求椭圆的方程及的值;(2)若,求椭圆的离心率的取值范围.18.在中,角,,的对边分别为,,.且满足.(Ⅰ)求角;(Ⅱ)若的面积为,,求边.19.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)已知数列的前项和,,求数列,的前项和.20.如图,在以、、、、、为顶点的五面体中,面是等腰梯形,,面是矩形,平面平面,,.(1)求证:平面平面;(2)若三棱锥的体积为,求的值.21.已知数列满足:,,数列满足:().(1)证明:数列是等比数列;(2)求数列的前项和,并比较与的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先判断出的大小关系,然后根据不等式的性质以及基本不等式逐项判断.【详解】由,得,,,故D不正确,C正确;,,,故A正确;,,,取等号时,故B正确,故选D.【点睛】本题考查利用不等式性质以及基本不等式判断不等式是否成立,难度一般.注意使用基本不等式计算最值时,取等号的条件一定要记得添加.2、C【解析】
根据正弦型函数的周期性可求得最小正周期,从而可知代入即可求得所有函数值.【详解】由题意得,最小正周期:;;;;;且值域为:本题正确选项:【点睛】本题考查正弦型函数值域问题的求解,关键是能够确定函数的最小正周期,从而计算出一个周期内的函数值.3、C【解析】
试题分析:由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.考点:三角形中正余弦定理的运用.4、B【解析】
在三棱锥中,求得,又由底面,所以,在直角中,求得,进而得到三棱锥外接球的直径,得到,利用体积公式,即可求解.【详解】由题意知,在三棱锥中,,,,所以,又由底面,所以,在直角中,,所以,根据球的性质,可得三棱锥外接球的直径为,即,所以球的体积为,故选B.【点睛】本题主要考查了与球有关的组合体中球的体积的计算,其中解答中根据组合体的结构特征和球的性质,准确求解球的半径是解答的关键,着重考查了推理与运算能力,属于中档试题.5、D【解析】
利用特殊角的三角函数值得出点的坐标,然后利用正弦的定义,求得的值.【详解】依题意可知,所以,故选D.【点睛】本小题主要考查三角函数的定义,考查特殊角的三角函数值,属于基础题.6、B【解析】
根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.7、A【解析】
由题意可得,,求解即可.【详解】,解得或,故解集为(-,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.8、C【解析】
由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,代入体积公式计算可得答案.【详解】解:由三视图知几何体为三棱锥,且三棱锥的高为,底面是直角边长分别为1,的直角三角形,∴三棱柱的体积V.故选:C.【点睛】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.9、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.10、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由方程可得或,然后分别解出规定范围内的解即可.【详解】因为所以或由得或因为,所以由得因为,所以综上:解集是故答案为:【点睛】方程的等价转化为或,不要把遗漏了.12、【解析】
考查等价转化能力和分析问题的能力,等比数列的通项,有连续四项在集合,四项成等比数列,公比为,=-9.13、(1)、(2)、(3)【解析】
利用等差数列和等比数列的定义,以及等差数列和等比数列的前项和形式,逐一判断即可.【详解】既是等差数列又是等比数列的数列是非零常数列,故(1)正确.等差数列的前项和是二次函数形式,且不含常数,故(2)正确.等比数列的前项和是常数加上常数乘以的形式,故(3)正确.故答案为:(1),(2),(3)【点睛】本题主要考查等差数列和等比数列的定义,同时考查了等差数列和等比数列的前项和,属于简单题.14、【解析】
根据三点共线求得的的关系式,利用基本不等式求得所求表达式的最小值.【详解】依题意,由于三点共线,所以,化简得,故,当且仅当,即时,取得最小值【点睛】本小题主要考查三点共线的向量表示,考查利用基本不等式求最小值,属于基础题.15、4【解析】
利用余弦定理变形可得,从而求得结果.【详解】由余弦定理得:本题正确结果:【点睛】本题考查余弦定理的应用,关键是能够熟练应用的变形,属于基础题.16、【解析】
先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)把的坐标代入方程得到,结合解出后可得标准方程.求出直线的方程,联立椭圆方程和直线方程后可求的坐标,故可得的值.(2)因,故可用表示的坐标,利用它在椭圆上可得与的关系,化简后可得与离心率的关系,由的范围可得的范围.【详解】(1)因为垂直于轴,且点的坐标为,所以,,解得,,所以椭圆的方程为.所以,直线的方程为,将代入椭圆的方程,解得,所以.(2)因为轴,不妨设在轴上方,,.设,因为在椭圆上,所以,解得,即.(方法一)因为,由得,,,解得,,所以.因为点在椭圆上,所以,即,所以,从而.因为,所以.解得,所以椭圆的离心率的取值范围.【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.圆锥曲线中的离心率的计算或范围问题,关键是利用题设条件构建关于的一个等式关系或不等式关系,其中不等式关系的构建需要利用题设中的范围、坐标的范围、几何量的范围或点的位置等.18、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)由正弦定理,两角和的正弦函数公式,同角三角函数基本关系式化简已知等式可得,结合范围,可得.(Ⅱ)由已知利用三角形的面积公式可得:,进而根据余弦定理可得的值.【详解】(Ⅰ)由得:∴∴又∴,即.又,∴(Ⅱ)∵的面积为,∴∴又,∴,即【点睛】本题主要考查了正弦定理,两角和的正弦函数公式,同角三角函数基本关系式,三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想.19、(1),(2)【解析】
(1)根据题意得到,解方程组即可.(2)首先根据,得到,再利用错位相减法即可求出.【详解】(1)有题知,解得.所以.(2)当时,,当时,.检查:当时,.所以,.①,②,①②得:,.【点睛】本题第一问考查等差数列的性质,第二问考查利用错位相减法求数列的前项和,同时考查了学生的计算能力,属于中档题.20、(1)证明见解析;(2).【解析】
(1)由面面垂直的性质定理得出平面,可得出,再推导出,利用线面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推导出平面,计算出的面积,然后利用锥体体积公式可求得三棱锥的体积,进而得解.【详解】(1)因为四边形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面积为,,平面,所以,平面,,故.【点睛】本题考查面面垂直的证明,同时也考查了利用三棱锥体积求参数,考查推理能力与计算能力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 23年预制菜食品生产项目合作协议书
- 员工赔偿金保密协议书(2篇)
- 2024年度农田租赁种植合同
- 2024年度常年法律顾问委托合同
- 2024年度养殖场窗帘定制采购安装合同
- 病程曲线预测模型研究
- VR沉浸式观影体验
- 2024年度光伏发电项目合同标的与工程实施
- 福利院服务质量评价培训体系建设
- 2024年度软件升级与维护合同(含技术支持)
- 四川大学法学院本科生国际经济法课件
- 2023年四川天府银行校园招聘笔试模拟试题及答案解析
- 铸牢中华民族共同体意识学习PPT
- 酒店工程管理的意义
- 做一个有温度护士课件
- 全屋定制家具订单管理流程图课件
- 眼科器械的机械清洗课件
- 汽车维修质量管理培训教材课件
- 实验室生物安全组织框架
- 超星尔雅学习通《海上丝绸之路》章节测试附答案
- 2022-2023学年苏教版(2019)必修二 2.1 DNA是主要的遗传物质 课件(36张)
评论
0/150
提交评论