河南省林州一中分校2025届数学高一下期末复习检测模拟试题含解析_第1页
河南省林州一中分校2025届数学高一下期末复习检测模拟试题含解析_第2页
河南省林州一中分校2025届数学高一下期末复习检测模拟试题含解析_第3页
河南省林州一中分校2025届数学高一下期末复习检测模拟试题含解析_第4页
河南省林州一中分校2025届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省林州一中分校2025届数学高一下期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义运算为执行如图所示的程序框图输出的值,则式子的值是A.-1 B.C. D.2.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)3.已知、都是单位向量,则下列结论正确的是()A. B. C. D.4.石臼是人类以各种石材制造的,用以砸、捣、研磨药材、食品等的生产工具,是由长方体挖去半球所得几何体,若某石臼的三视图如图所示(单位:dm),则其表面积(单位:dm2)为()A.132+8π B.168+4π C.132+12π D.168+16π5.数列的通项公式,则()A. B. C.或 D.不存在6.已知,且,则()A. B. C. D.7.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数8.球是棱长为的正方体的内切球,则这个球的体积为()A. B. C. D.9.已知角α终边上一点P(-2,3),则cos(A.32 B.-32 C.10.若为圆的弦的中点,则直线的方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.12.函数的最小值是.13.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.现从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为.14.已知,若直线与直线垂直,则的最小值为_____15.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______16.在等比数列中,,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.已知中,,,点D在AB上,,并且.(1)求BC的长度;(2)若点E为AB中点,求CE的长度.19.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过20.在平面直角坐标系xOy中,已知点,圆.(1)求过点P且与圆C相切于原点的圆的标准方程;(2)过点P的直线l与圆C依次相交于A,B两点.①若,求l的方程;②当面积最大时,求直线l的方程.21.在中,已知角的对边分别为,且.(1)求角的大小;(2)若,是的中点,且,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由已知的程序框图可知,本程序的功能是:计算并输出分段函数的值,由此计算可得结论.【详解】由已知的程序框图可知:本程序的功能是:计算并输出分段函数的值,可得,因为,所以,,故选D.【点睛】本题主要考查条件语句以及算法的应用,属于中档题.算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.2、C【解析】

根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.3、B【解析】

由、都是单位向量,由向量的数量积和共线的定义可判断出正确选项.【详解】由、都是单位向量,所以.设、的夹角为.则,所以A,D不正确.当时,、同向或反向,所以C不正确.,所以B正确.故选:B【点睛】本题考查了单位向量的概念,属于概念考查题,应该掌握.4、B【解析】

利用三视图的直观图,画出几何体的直观图,然后求解表面积即可.【详解】几何体的直观图如图:几何体的表面积为:6×6×2+4×6×4﹣4π+2π×22=168+4π.故选:B.【点评】本题考查三视图及求解几何体的表面积,判断几何体的形状是解题的关键.5、B【解析】

因为趋于无穷大,故,分离常数即可得出极限.【详解】解:因为的通项公式,要求,即求故选:B【点睛】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.6、D【解析】

根据不等式的性质,一一分析选择正误即可.【详解】根据不等式的性质,当时,对于A,若,则,故A错误;对于B,若,则,故B错误;对于C,若,则,故C错误;对于D,当时,总有成立,故D正确;故选:D.【点睛】本题考查不等式的基本性质,属于基础题.7、B【解析】

根据均值不等式成立的条件逐项分析即可.【详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【点睛】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.8、A【解析】

棱长为的正方体的内切球的半径,由此能求出其体积.【详解】棱长为的正方体的内切球的半径==1,体积.故选:A.【点睛】本题考查了正方体的内切球的性质和应用,属于基础题.9、A【解析】角α终边上一点P(-2,3),所以cos(10、D【解析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.二、填空题:本大题共6小题,每小题5分,共30分。11、(4,5)4.【解析】

根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.12、3【解析】试题分析:考点:基本不等式.13、.【解析】试题分析:从中任取3个不同的数,有,,,,,,,,,共10种,其中只有为勾股数,故这3个数构成一组勾股数的概率为.考点:用列举法求随机事件的概率.14、8【解析】

两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.15、①③④⑤【解析】

由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想16、8【解析】

可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1);(2)【解析】

(1)根据所给条件,结合三角函数可先求得.再由即可求得,进而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E为AB中点,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【详解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又点E为AB中点,可得,,在直角中,,在直角中,,所以.【点睛】本题考查了余弦定理在解三角形中的应用,线段关系及勾股定理求线段长的应用,属于基础题.19、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】

(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛】本题考查动点轨迹方程的求法,考查直线截圆所得弦长的计算以及动圆所过定点的问题,解决圆所过定点问题,关键是要将圆的方程求出来,对带参数的部分提公因式,转化为方程组求公共解问题.20、(1);(2)①;②或.【解析】

(1)设所求圆的圆心为,而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,求出圆的圆心和半径,即可得答案;(2)①由题意可得为圆的直径,求出的坐标,可得直线的方程;②当直线的斜率不存在时,直线方程为,求出,的坐标,得到的面积;当直线的斜率存在时,设直线方程为.利用基本不等式、点到直线的距离公式求得,则直线方程可求.【详解】(1)由,得,圆的圆心坐标,设所求圆的圆心为.而所求圆的圆心与、共线,故圆心在直线上,又圆同时经过点与点,圆心又在直线上,则有:,解得:,即圆心的坐标为,又,即半径,故所求圆的方程为;(2)①由,得为圆的直径,则过点,的方程为,联立,解得,直线的斜率,则直线的方程为,即;②当直线的斜率不存在时,直线方程为,此时,,,;当直线的斜率存在时,设直线方程为.再设直线被圆所截弦长为,则圆心到直线的距离,则.当且仅当,即时等号成立.此时弦长为10,圆心到直线的距离为5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论