




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆哈密石油高级中学2025届数学高一下期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.212.已知的内角的对边分别为,若,则的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形3.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B.C. D.4.函数的图象()A.关于点(-,0)对称 B.关于原点对称 C.关于y轴对称 D.关于直线x=对称5.下列事件是随机事件的是(1)连续两次掷一枚硬币,两次都出现正面向上.(2)异性电荷相互吸引(3)在标准大气压下,水在℃时结冰(4)任意掷一枚骰子朝上的点数是偶数A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)6.点直线与线段相交,则实数的取值范围是()A. B.或C. D.或7.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年8.函数的部分图像大致为A. B. C. D.9.《九章算术》是我国古代数学成就的杰出代表作之一,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积(弦矢矢),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于6米的弧田,按照上述经验公式计算所得弧田面积约为()A.12平方米 B.16平方米 C.20平方米 D.24平方米10.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断二、填空题:本大题共6小题,每小题5分,共30分。11.已知角α的终边与单位圆交于点.则___________.12.函数的定义域为_______.13.函数的值域是__________.14.函数是定义域为R的奇函数,当时,则的表达式为________.15.若6是-2和k的等比中项,则______.16.函数在区间上的最大值为,则的值是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.18.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.19.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.21.已知函数.(1)求函数的最小正周期和单调增区间;(2)求函数在区间上的最小值以及取得该最小值时的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.2、A【解析】中,,所以.由正弦定理得:.所以.所以,即因为为的内角,所以所以为等腰三角形.故选A.3、A【解析】
根据题意,由函数的奇偶性分析可得,进而结合单调性分析可得,解可得的取值范围,即可得答案.【详解】解:根据题意,为偶函数,则,
又由函数在区间上单调递增,
则,
解得:,
故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于的不等式.4、A【解析】
关于点(-,0)对称,选A.5、D【解析】试题分析:根据随机事件的定义:在相同条件下,可能发生也可能不发生的现象(2)是必然发生的,(3)是不可能发生的,所以不是随机事件,故选择D考点:随机事件的定义6、C【解析】
直线经过定点,斜率为,数形结合利用直线的斜率公式,求得实数的取值范围,得到答案.【详解】如图所示,直线经过定点,斜率为,当直线经过点时,则,当直线经过点时,则,所以实数的取值范围,故选C.【点睛】本题主要考查了直线过定点问题,以及直线的斜率公式的应用,着重考查了数形结合法,以及推理与运算能力,属于基础题.7、C【解析】
天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【点睛】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.8、C【解析】由题意知,函数为奇函数,故排除B;当时,,故排除D;当时,,故排除A.故选C.点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.9、C【解析】
在中,由题意OA=4,∠DAO=,即可求得OD,AD的值,根据题意可求矢和弦的值,即可利用公式计算求值得解.【详解】如图,由题意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面积=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故选:C【点睛】本题考查扇形的面积公式,考查数学阅读能力和数学运算能力,属于中档题.10、C【解析】
根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【点睛】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用三角函数的坐标定义求解.【详解】由题得.故答案为【点睛】本题主要考查三角函数的坐标定义,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】
由二次根式有意义,得:,然后利用指数函数的单调性即可得到结果.【详解】由二次根式有意义,得:,即,因为在R上是增函数,所以,x≤2,即定义域为:【点睛】本题主要考查函数定义域的求法以及指数不等式的解法,要求熟练掌握常见函数成立的条件,比较基础.13、【解析】
根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】试题分析:当时,,,因是奇函数,所以,是定义域为R的奇函数,所以,所以考点:函数解析式、函数的奇偶性15、-18【解析】
根据等比中项的性质,列出等式可求得结果.【详解】由等比中项的性质可得,,得.故答案为:-18【点睛】本题主要考查等比中项的性质,属于基础题.16、【解析】
利用同角三角函数平方关系,易将函数化为二次型的函数,结合余弦函数的性质,及函数在上的最大值为1,易求出的值.【详解】函数又函数在上的最大值为1,≤0,又,且在上单调递增,所以即.故答案为:【点睛】本题考查的知识点是三角函数的最值,其中利用同角三角函数平方关系,将函数化为二次型的函数,是解答本题的关键,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由行列式的运算法则,得原不等式即,而不等式的解集为,采用比较系数法,即可得到实数的值;(2)把代入,求得,进一步得到,再由两角差的正切公式即可求解.【详解】(1)原不等式等价于,由题意得不等式的解集为,故是方程的两个根,代入解得,所以实数的值为.(2)由,得,即.,【点睛】本题考查了行列式的运算法则、由一元二次不等式的解集求参数值、二倍角的正切公式以及两角差的正切公式,需熟记公式,属于基础题.18、(1)证明见解析(2)到平面的距离为【解析】
试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离19、(1);(2)小时【解析】
(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.20、(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】
试题分析:(Ⅰ)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(Ⅱ)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(Ⅲ)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.试题解析:(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为考点:1.频率分布直方图;2.概率和频率的关系;3.古典概型.【名师点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.21、(1)最小正周期为,单调递增区间为;(2)当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习古代文学史的试题及答案
- 湖北省武汉市东西湖区2023-2024学年八年级下学期期中考试英语试题(含答案)
- 药理学考试常见复习误区试题及答案
- 统计学考试过程与结果评估试题及答案
- 2024年汽车维修工行业交流技巧试题及答案
- 食品检测技术的发展趋势试题及答案
- 2024年汽车维修工考试技巧提升
- 古代文学史作品分析试题及答案
- 库房管理工作
- 时间管理大师65
- 消费行为影响机制-深度研究
- 健康咨询与服务推广协议
- 护士N1晋级N2述职报告
- 中国糖尿病防治指南(2024版)解读
- 食堂食材配送采购投标方案(技术标)
- 山东省汶上县市级名校2025届中考生物全真模拟试卷含解析
- 2025年度智能硬件产品全国区域独家代理合同3篇
- 办公室安全知识培训课件
- 2025年四川省成都市青白江区招聘50人历年高频重点提升(共500题)附带答案详解
- 2025年浙江嘉兴市众业供电服务限公司招聘38人高频重点提升(共500题)附带答案详解
- 中国技能大赛-第45届世界技能大赛全国选拔赛“水处理技术”项目技术工作文件
评论
0/150
提交评论