版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宝坻区第一中学2025届高一下数学期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花和蓝花的盆数分别为A.2,1 B.1,2 C.0,3 D.3,02.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3.将数列中的所有项排成如下数阵:其中每一行项数是上一行项数的倍,且从第二行起每-行均构成公比为的等比数列,记数阵中的第列数构成的数列为,为数列的前项和,若,则等于()A. B. C. D.4.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为().A. B.2 C. D.5.已知为第Ⅱ象限角,则的值为()A. B. C. D.6.在数列中,若,,,设数列满足,则的前项和为()A. B. C. D.7.已知函数,此函数的图象如图所示,则点的坐标是()A. B. C. D.8.已知函数,其图像相邻的两个对称中心之间的距离为,且有一条对称轴为直线,则下列判断正确的是()A.函数的最小正周期为B.函数的图象关于直线对称C.函数在区间上单调递增D.函数的图像关于点对称9.在中,分别为角的对边,若,且,则边=()A. B. C. D.10.直线与平行,则的值为()A. B.或 C.0 D.-2或0二、填空题:本大题共6小题,每小题5分,共30分。11.已知不等式的解集为,则________.12.如图,边长为2的菱形的对角线相交于点,点在线段上运动,若,则的最小值为_______.13.已知为所在平面内一点,且,则_____14.在△ABC中,若a2=b2+bc+c2,则A=________.15.给出下列五个命题:①函数的一条对称轴是;②函数的图象关于点(,0)对称;③正弦函数在第一象限为增函数;④若,则,其中;⑤函数的图像与直线有且仅有两个不同的交点,则的取值范围为.以上五个命题中正确的有(填写所有正确命题的序号)16.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知方程有两个实根,记,求的值.18.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.19.已知数列为单调递增数列,,其前项和为,且满足.(1)求数列的通项公式;(2)若数列,其前项和为,若成立,求的最小值.20.设数列的前项和为,已知.(1)求,的值;(2)求证:数列是等比数列.21.高一某班以小组为单位在周末进行了一次社会实践活动,且每小组有5名同学,活动结束后,对所有参加活动的同学进行测评,其中A,B两个小组所得分数如下表:A组8677809488B组9183?7593其中B组一同学的分数已被污损,看不清楚了,但知道B组学生的平均分比A组学生的平均分高出1分.(1)若从B组学生中随机挑选1人,求其得分超过85分的概率;(2)从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用分层抽样的性质直接求解.【详解】解:用分层抽样的方法从10盆红花和5盆蓝花中选出3盆,则所选红花的盆数为:,所选蓝花的盆数为:.故选:A.【点睛】本题考查所选红花和蓝花的盆数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.2、A【解析】
观察折线图可知月接待游客量每年7,8月份明显高于12月份,且折线图呈现增长趋势,高峰都出现在7、8月份,1月至6月的月接待游客量相对于7月至12月波动性更小.【详解】对于选项A,由图易知月接待游客量每年7,8月份明显高于12月份,故A错;对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;对于选项C,D,由图可知显然正确.故选A.【点睛】本题考查折线图,考查考生的识图能力,属于基础题.3、C【解析】
先确定为第11行第2个数,由可得,最后根据从第二行起每一行均构成公比为的等比数列即可得出结论.【详解】∵其中每一行项数是上一行项数的倍,第一行有一个数,前10行共计个数,即为第11行第2个数,又∵第列数构成的数列为,,∴当时,,∴第11行第1个数为108,∴,故选:C.【点睛】本题主要考查数列的性质和应用,本题解题的关键是为第11行第2个数,属于中档题.4、D【解析】
利用三角形面积公式列出关系式,把,已知面积代入求出的长,再利用余弦定理即可求出的长.【详解】∵在中,,且的面积为,
∴,
解得:,
由余弦定理得:,
则.
故选D.【点睛】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.5、B【解析】
首先由,解出,求出,再利用二倍角公式以及所在位置,即可求出.【详解】因为,所以或,又为第Ⅱ象限角,故,.因为为第Ⅱ象限角即,所以,,即为第Ⅰ,Ⅲ象限角.由于,解得,故选B.【点睛】本题主要考查二倍角公式的应用以及象限角的集合应用.6、D【解析】
利用等差中项法得知数列为等差数列,根据已知条件可求出等差数列的首项与公差,由此可得出数列的通项公式,利用对数与指数的互化可得出数列的通项公式,并得知数列为等比数列,利用等比数列前项和公式可求出.【详解】由可得,可知是首项为,公差为的等差数列,所以,即.由,可得,所以,数列是以为首项,以为公比的等比数列,因此,数列的前项和为,故选D.【点睛】本题考查利用等差中项法判断等差数列,同时也考查了对数与指数的互化以及等比数列的求和公式,解题的关键在于结合已知条件确定数列的类型,并求出数列的通项公式,考查运算求解能力,属于中等题.7、B【解析】
根据确定的两个相邻零点的值可以求出最小正周期,进而利用正弦型最小正周期公式求出的值,最后把其中的一个零点代入函数的解析式中,求出的值即可.【详解】设函数的最小正周期为,因此有,当时,,因此的坐标为:.故选:B【点睛】本题考查了通过三角函数的图象求参数问题,属于基础题.8、C【解析】
本题首先可根据相邻的两个对称中心之间的距离为来确定的值,然后根据直线是对称轴以及即可确定的值,解出函数的解析式之后,通过三角函数的性质求出最小正周期、对称轴、单调递增区间以及对称中心,即可得出结果.【详解】图像相邻的两个对称中心之间的距离为,即函数的周期为,由得,所以,又是一条对称轴,所以,,得,又,得,所以.最小正周期,项错误;令,,得对称轴方程为,,选项错误;由,,得单调递增区间为,,项中的区间对应,故正确;由,,得对称中心的坐标为,,选项错误,综上所述,故选C.【点睛】本题考查根据三角函数图像性质来求三角函数解析式以及根据三角函数解析式得出三角函数的相关性质,考查对函数的相关性质的理解,考查推理能力,是中档题.9、B【解析】
由利用正弦定理化简,再利用余弦定理表示出cosA,整理化简得a2b2+c2,与,联立即可求出b的值.【详解】由sinB=8cosAsinC,利用正弦定理化简得:b=8c•cosA,将cosA代入得:b=8c•,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),则b=1.故选B【点睛】此题考查了正弦、余弦定理,熟练掌握定理,准确计算是解本题的关键,是中档题10、A【解析】
若直线与平行,则,解出a值后,验证两条直线是否重合,可得答案.【详解】若直线与平行,
则,
解得或,
又时,直线与表示同一条直线,
故,
故选A.本题考查的知识点是直线的一般式方程,直线的平行关系,正确理解直线平行的几何意义是解答的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、-7【解析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【详解】由不等式的解集为,可得,解得,所以.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】
以为原点建立平面直角坐标系,利用计算出两点的坐标,设出点坐标,由此计算出的表达式,,进而求得最值.【详解】以为原点建立平面直角坐标系如下图所示,设,则①,由得②,由①②解得,故.设,则,当时取得最小值为.故填:.【点睛】本小题主要考查平面向量的坐标运算,考查向量数量积的坐标表示以及数量积求最值,考查二次函数的性质,考查数形结合的数学思想方法,属于中档题.13、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.14、120°【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cosA===-,又∵A为△ABC的内角,∴A=120°故答案为:120°15、①②⑤【解析】试题分析:①将代入可得函数最大值,为函数对称轴;②函数的图象关于点对称,包括点;③,③错误;④利用诱导公式,可得不同于的表达式;⑤对进行讨论,利用正弦函数图象,得出函数与直线仅有有两个不同的交点,则.故本题答案应填①②⑤.考点:三角函数的性质.【知识点睛】本题主要考查三角函数的图象性质.对于和的最小正周期为.若为偶函数,则当时函数取得最值,若为奇函数,则当时,.若要求的对称轴,只要令,求.若要求的对称中心的横坐标,只要令即可.16、【解析】
先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
求出的值和的范围即可【详解】因为,所以又有两个实根所以所以因为所以,所以所以所以故答案为:【点睛】1.要清楚反三角函数的定义域和值域,如的定义域为,值域为2.由三角函数的值求角时一定要判断出角的范围.18、(1);(2)【解析】
(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出的值,由结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间应该包含在的一个增区间内,根据包含关系列出不等式组,求解即可得出正数的取值范围.【详解】(1)因为,所以,即.因为,所以所以.所以.(2).令,得,因为函数在区间上是单调递增函数所以存在,使得所以有,即因为,所以又因为,所以,则,所以从而有,所以,所以.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.19、(1);(2)10.【解析】
(1)先根据和项与通项关系得项之间递推关系,再根据等差数列定义及其通项公式得数列的通项公式;(2)先根据裂项相消法求,再解不等式得,即得的最小值.【详解】(1)由知:,两式相减得:,即,又数列为单调递增数列,,∴,∴,又当时,,即,解得或(舍),符合,∴是以1为首项,以2为公差的等差数列,∴.(2),∴,又∵,即,解得,又,所以的最小值为10.点睛:裂项相消法是指将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.20、(1),(2)见解析【解析】
(1)依次令,,解出即可。(2)由知当时,两式相减,化简即可得证。【详解】解(1)∵,∴当时,;当时,,∴;当时,,∴.(2)证明:∵,①∴当时,,②①-②得,∴,即.∴.∵.∴,∴.即是以4为首项,2为公比的等比数列.【点睛】本题考查公式的应用,属于基础题。21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 无子女无财产的离婚协议书模板
- 桥梁工程劳务分包合同
- 南京市2024年度商品房买卖合同解除协议书
- 整形美容外科手术协议书
- 委托担保业务合同书
- 网店代发合同模板
- 居然之家租赁合同范例
- 碎石供需合同2024年度版
- 基于物联网的智能农业解决方案2024年度采购合同
- 二手房屋买卖合同范本北京04
- 《班级安全员培训》课件
- 2024-2030年中国风电运维行业发展现状规划分析报告
- 福建省福州第十八中学2023-2024学年八年级上学期期中语文试题
- 光伏项目达标投产实施细则-施工
- 完整审计合同模板
- 统编版(2024)七年级上册道德与法治第三单元《珍爱我们的生命》测试卷(含答案)
- 2024年新人教版道德与法治七年级上册全册教案(新版教材)
- 小学六年级数学100道题解分数方程
- 产前检查的操作评分标准
- 食堂油烟系统清洗服务投标方案
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
评论
0/150
提交评论