版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宿州市宿城第一中学2025届高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在上零点的个数为()A.2 B.3 C.4 D.52.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.3.在正方体中,异面直线与所成角的大小为()A. B. C. D.4.定义平面凸四边形为平面上没有内角度数大于的四边形,在平面凸四边形中,,,,,设,则的取值范围是()A. B. C. D.5.在△ABC中,D是边BC的中点,则=A. B. C. D.6.过点且与圆相切的直线方程为()A. B.或C.或 D.或7.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A. B. C. D.8.中,已知,则角()A.90° B.105° C.120° D.135°9.已知等差数列的前n项和为,且,,则()A.11 B.16 C.20 D.2810.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.二、填空题:本大题共6小题,每小题5分,共30分。11.102,238的最大公约数是________.12.已知直线过点,,则直线的倾斜角为______.13.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).14.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.15.若关于的方程()在区间有实根,则最小值是____.16.设,且,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.18.某班在一次个人投篮比赛中,记录了在规定时间内投进个球的人数分布情况:进球数(个)012345投进个球的人数(人)1272其中和对应的数据不小心丢失了,已知进球3个或3个以上,人均投进4个球;进球5个或5个以下,人均投进2.5个球.(1)投进3个球和4个球的分别有多少人?(2)从进球数为3,4,5的所有人中任取2人,求这2人进球数之和为8的概率.19.已知直角梯形中,,,,,,过作,垂足为,分别为的中点,现将沿折叠,使得.(1)求证:(2)在线段上找一点,使得,并说明理由.20.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.21.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
在同一直角坐标系下,分别作出与的图象,结合函数图象即可求解.【详解】解:由题意知:函数在上零点个数,等价于与的图象在同一直角坐标系下交点的个数,作图如下:由图可知:函数在上有个零点.故选:D【点睛】本题考查函数的零点的知识,考查数形结合思想,属于中档题.2、B【解析】
根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【点睛】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.3、C【解析】
连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.4、D【解析】
先利用余弦定理计算,设,将表示为的函数,再求取值范围.【详解】如图所示:在中,利用正弦定理:当时,有最小值为当时,有最大值为(不能取等号)的取值范围是故答案选D【点睛】本题考查了利用正余弦定理计算长度范围,将表示为的函数是解题的关键.5、C【解析】分析:利用平面向量的减法法则及共线向量的性质求解即可.详解:因为是的中点,所以,所以,故选C.点睛:本题主要考查共线向量的性质,平面向量的减法法则,属于简单题.6、C【解析】
分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.7、B【解析】根据三视图可知几何体是组合体:上面是半个圆锥(高为圆柱的一半),下面是半个圆柱,其中圆锥底面半径是,高是,圆柱的底面半径是,母线长是,所以该几何体的体积,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.8、C【解析】
由诱导公式和两角差的正弦公式化简已知不等式可求得关系,求出后即可求得.【详解】,∴,是三角形内角,,,则由得,∴,从而.故选:C.【点睛】本题考查两角差的正弦公式和诱导公式,考查正弦函数性质.已知三角函数值只要确定了角的范围就可求角.9、C【解析】
可利用等差数列的性质,,仍然成等差数列来解决.【详解】为等差数列,前项和为,,,成等差数列,,又,,,.故选:.【点睛】本题考查等差数列的性质,关键在于掌握“等差数列中,,仍成等差数列”这一性质,属于基础题.10、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.二、填空题:本大题共6小题,每小题5分,共30分。11、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.12、【解析】
根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.13、1.76【解析】
将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.【考点】中位数的概念【点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.14、【解析】由,行驶了4小时,这只船的航行速度为海里/小时.【点睛】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.15、【解析】
将看作是关于的直线方程,则表示点到点的距离的平方,根据距离公式可求出点到直线的距离最小,再结合对勾函数的单调性,可求出最小值。【详解】将看作是关于的直线方程,表示点与点之间距离的平方,点到直线的距离为,又因为,令,在上单调递增,所以,所以的最小值为.【点睛】本题主要考查点到直线的距离公式以及对勾函数单调性的应用,意在考查学生转化思想的的应用。16、【解析】
通过可求得x的取值范围,接着利用反正弦函数的定义可得的取值范围.【详解】,,即.由反正弦函数的定义可得,即的取值范围为.故答案为:.【点睛】本题主要考查余弦函数的定义域和值域,反正弦函数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.18、(1)投进3个球和4个球的分别有2人和2人;(2).【解析】
(1)设投进3个球和4个球的分别有,人,则,解方程组即得解.(2)利用古典概型的概率求这2人进球数之和为8的概率.【详解】解:(1)设投进3个球和4个球的分别有,人,则解得.故投进3个球和4个球的分别有2人和2人.(2)若要使进球数之和为8,则1人投进3球,另1人投进5球或2人都各投进4球.记投进3球的2人为,;投进4球的2人为,;投进5球的2人为,.则从这6人中任选2人的所有可能事件为:,,,,,,,,,,,,,,.共15种.其中进球数之和为8的是,,,,,有5种.所以这2人进球数之和为8的概率为.【点睛】本题主要考查平均数的计算和古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(1)见解析(2)【解析】试题分析:(Ⅰ)由已知得:面面;(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下先计算再求得,
,再证面面面.试题解析:(Ⅰ)由已知得:面面
(II)分析可知,点满足时,面BDR⊥面BDC.
理由如下:取中点,连接
容易计算在中∵可知,
∴在中,
又在中,为中点面,
∴面面.20、(1)4(2)【解析】
(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【点睛】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.21、(1)证明见解析(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度广告制作及拍摄合同
- 2024年度瓷砖供货与支付条款合同
- 2024年度版权使用及授权合同标的
- 2024年度智能玻璃采购合同
- 2024年度不锈钢制品产业链整合合同
- 2024年度互联网健身平台与合作健身房合同
- 2024年度版权转让及许可合同
- 2024年度健身馆合作经营合同标的及合作方式
- 2024年度医疗机构卫生间设施改造承包合同
- 2024年度玛雅房屋租赁合同范本格式
- 痛风性关节炎(课件)
- 企业安全管理实用读本(第2版)
- 《去奶奶家》( 教学设计)- 三年级上册数学北师大版
- 小区沥青路面施工方法或方案
- 幼儿园小班健康:《睡觉要有好习惯》 课件
- 视觉与艺术智慧树知到答案章节测试2023年
- 全国外语水平考试(WSK)日语NNS
- 六年级上册科学课件-4.17 太阳系的奥秘丨冀教版 共13
- 2023年湖南商务职业技术学院高职单招(语文)试题库含答案解析
- GB/T 19666-2019阻燃和耐火电线电缆或光缆通则
- GB/T 18168-2017水上游乐设施通用技术条件
评论
0/150
提交评论