版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省镇平县第一中学2025届高一数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.22.已知函数的定义域为,当时,,且对任意的实数,等式恒成立,若数列满足,且,则的值为()A.4037 B.4038 C.4027 D.40283.已知:,则()A. B. C. D.4.若,满足,则的最大值为().A. B. C. D.5.一游客在处望见在正北方向有一塔,在北偏西方向的处有一寺庙,此游客骑车向西行后到达处,这时塔和寺庙分别在北偏东和北偏西,则塔与寺庙的距离为()A. B. C. D.6.是()A.最小正周期为的偶函数 B.最小正周期为的奇函数C.最小正周期为的偶函数 D.最小正周期为的奇函数7.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.8.已知,且,那么a,b,,的大小关系是()A. B.C. D.9.下列不等式正确的是()A.若,则 B.若,则C.若,则 D.若,则10.设x、y满足约束条件,则z=2x﹣y的最大值为()A.0 B.0.5 C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.半径为的圆上,弧长为的弧所对圆心角的弧度数为________.12.在上定义运算,则不等式的解集为_____.13.已知数列满足:其中,若,则的取值范围是______.14.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.15.中,内角、、所对的边分别是、、,已知,且,,则的面积为_____.16.如图,在中,,是边上一点,,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.18.如图,是以向量为边的平行四边形,又,试用表示.19.已知函数.(1)求的值;(2)若,求的取值范围.20.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.21.已知直线经过点,且与轴正半轴交于点,与轴正半轴交于点,为坐标原点.(1)若点到直线的距离为4,求直线的方程;(2)求面积的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.2、A【解析】
由,对任意的实数,等式恒成立,且,得到an+1=an+2,由等差数列的定义求得结果.【详解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)•f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,则f(﹣1)•f(0)=f(﹣1),∵当x<0时,f(x)>1,∴f(﹣1)≠0,则f(0)=1,则f(an+1)f(﹣2﹣an)=1,等价为f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),则an+1﹣2﹣an=0,∴an+1﹣an=2.∴数列{an}是以1为首项,以2为公差的等差数列,首项a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故选:A【点睛】本题主要考查数列与函数的综合运用,根据抽象函数的关系结合等差数列的通项公式建立方程是解决本题的关键,属于中档题.3、A【解析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.【详解】令,则,所以,所以,故选A.【点睛】本题关键在于观察出已知角与待求的角之间的特殊关系,属于中档题.4、D【解析】作出不等式组,所表示的平面区域,如图所示,当时,可行域为四边形内部,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,此时,,当时,可行域为三角形,目标函数可化为,即,平移直线可知当直线经过点时,直线的截距最大,从而最大,,综上,的最大值为.故选.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.注意解答本题时不要忽视斜率不存在的情形.5、C【解析】
先根据题干描述,画出ABCD的相对位置,再解三角形.【详解】如图先求出,的长,然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故选C.【点睛】本题考查正余弦定理解决实际问题中的距离问题,正确画出其相对位置是关键,属于中档题.6、A【解析】
将函数化为的形式后再进行判断便可得到结论.【详解】由题意得,∵,且函数的最小正周期为,∴函数时最小正周期为的偶函数.故选A.【点睛】判断函数最小正周期时,需要把函数的解析式化为或的形式,然后利用公式求解即可得到周期.7、B【解析】
过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.8、D【解析】
直接用作差法比较它们的大小得解.【详解】;;.故.故选:D【点睛】本题主要考查了作差法比较实数的大小,意在考查学生对这些知识的理解掌握水平,属于基础题.9、B【解析】试题分析:A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B.若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.考点:不等式的性质.10、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×2﹣3=1.故选:C.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据弧长公式即可求解.【详解】由弧长公式可得故答案为:【点睛】本题主要考查了弧长公式的应用,属于基础题.12、【解析】
根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.13、【解析】
令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.14、【解析】
先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.15、【解析】
由正弦定理边角互化思想结合两角和的正弦公式得出,再利用余弦定理可求出、的值,然后利用三角形的面积公式可计算出的面积.【详解】,由边角互化思想得,即,,由余弦定理得,,所以,,因此,,故答案为.【点睛】本题考查正弦定理边角互化思想的应用,考查利用余弦定理解三角形以及三角形面积公式的应用,解题时要结合三角形已知元素类型合理选择正弦、余弦定理解三角形,考查运算求解能力,属于中等题.16、【解析】
由图及题意得
,
=
∴
=(
)(
)=
+
=
=
.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)是等比数列,详见解析(3)答案不唯一,具体见解析【解析】
(1)由即可证明;(2)证明即可(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,讨论和分组求和即可【详解】(1)因为,且是以q为公比的等比数列,所以,则,所以.(2)是等比数列因为;所以,又所以是以5为首项,为公比的等比数列.(3)由(1)可知,是以为公比的等比数列,也是以为公比的等比数列,所以当时,,当时.【点睛】本题考查等比数列的证明,分组求和,考查推理计算及分类讨论思想,是中档题18、,,【解析】试题分析:利用向量的加减法的几何意义得,再结合已知及图形得最后求出.试题解析:解:考点:向量的加减法的几何意义19、(1);(2)【解析】
(1)将)化简为,代入从而求得结果.(2)由,得,从而确定的范围.【详解】(1)(2)由,得解得,,即的取值范围是【点睛】本题主要考查三角函数的化简求值,不等式的求解,意在考查学生的运算能力和分析能力,难度不大.20、(1),(2)递增区间为,(3)【解析】
(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【点睛】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学教学常规岗前培训
- 2024年艾蒿种植合同范本大全
- 代售酒店客房合作协议书范文
- 广东离婚协议书范文2024标准版
- 幼儿园食品安全培训
- 人教版英语八年级下册 Unit 2 Section A 课文挖空练习及知识点练习
- 西南政法大学经济法学院
- 高校医疗中心院内病人转运流程
- 教师专业素养的培训
- 员工三级安全培训试题带答案(巩固)
- 广东省深圳市(2024年-2025年小学三年级语文)统编版质量测试(上学期)试卷(含答案)
- (高清稿)DB44∕T 2494-2024 河道水域岸线保护与利用规划编制技术规程
- 儿童青少年视力普查规范
- 汽车修理工劳动合同三篇
- 2024年全国职业院校技能大赛高职组(药学技能赛项)考试题库(含答案)
- 2024至2030年中国羽毛球行业发展现状及投资趋势研究报告
- 第2课《原始农业与史前社会》教学设计-2024-2025学年七年级历史人教版(2024版)上册
- 新时代智慧物流行业人才培养与团队建设方案
- 临床医学:肿瘤标志物
- 风电项目风机吊装专项施工方案
- 2024版供应链代理采购合同协议书范本
评论
0/150
提交评论