陕西省渭南市2023-2024学年高三下第一次测试数学试题含解析_第1页
陕西省渭南市2023-2024学年高三下第一次测试数学试题含解析_第2页
陕西省渭南市2023-2024学年高三下第一次测试数学试题含解析_第3页
陕西省渭南市2023-2024学年高三下第一次测试数学试题含解析_第4页
陕西省渭南市2023-2024学年高三下第一次测试数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省渭南市2023-2024学年高三下第一次测试数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生2.已知集合,若,则实数的取值范围为()A. B. C. D.3.已知焦点为的抛物线的准线与轴交于点,点在抛物线上,则当取得最大值时,直线的方程为()A.或 B.或 C.或 D.4.双曲线:(),左焦点到渐近线的距离为2,则双曲线的渐近线方程为()A. B. C. D.5.集合,,则()A. B. C. D.6.若样本的平均数是10,方差为2,则对于样本,下列结论正确的是()A.平均数为20,方差为4 B.平均数为11,方差为4C.平均数为21,方差为8 D.平均数为20,方差为87.已知点(m,8)在幂函数的图象上,设,则()A.b<a<c B.a<b<c C.b<c<a D.a<c<b8.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.9.已知集合,定义集合,则等于()A. B.C. D.10.已知函数则函数的图象的对称轴方程为()A. B.C. D.11.已知a>b>0,c>1,则下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.12.的展开式中有理项有()A.项 B.项 C.项 D.项二、填空题:本题共4小题,每小题5分,共20分。13.展开式中项系数为160,则的值为______.14.已知集合,若,且,则实数所有的可能取值构成的集合是________.15.三棱柱中,,侧棱底面,且三棱柱的侧面积为.若该三棱柱的顶点都在同一个球的表面上,则球的表面积的最小值为_____.16.如图,直三棱柱中,,,,P是的中点,则三棱锥的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四边形为菱形,为与的交点,平面.(1)证明:平面平面;(2)若,,三棱锥的体积为,求菱形的边长.18.(12分)已知抛物线,过点的直线交抛物线于两点,坐标原点为,.(1)求抛物线的方程;(2)当以为直径的圆与轴相切时,求直线的方程.19.(12分)已知函数.(Ⅰ)已知是的一个极值点,求曲线在处的切线方程(Ⅱ)讨论关于的方程根的个数.20.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.21.(12分)若正数满足,求的最小值.22.(10分)已知等差数列满足,.(l)求等差数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.2、A【解析】

解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.3、A【解析】

过作与准线垂直,垂足为,利用抛物线的定义可得,要使最大,则应最大,此时与抛物线相切,再用判别式或导数计算即可.【详解】过作与准线垂直,垂足为,,则当取得最大值时,最大,此时与抛物线相切,易知此时直线的斜率存在,设切线方程为,则.则,则直线的方程为.故选:A.【点睛】本题考查直线与抛物线的位置关系,涉及到抛物线的定义,考查学生转化与化归的思想,是一道中档题.4、B【解析】

首先求得双曲线的一条渐近线方程,再利用左焦点到渐近线的距离为2,列方程即可求出,进而求出渐近线的方程.【详解】设左焦点为,一条渐近线的方程为,由左焦点到渐近线的距离为2,可得,所以渐近线方程为,即为,故选:B【点睛】本题考查双曲线的渐近线的方程,考查了点到直线的距离公式,属于中档题.5、A【解析】

计算,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,属于简单题.6、D【解析】

由两组数据间的关系,可判断二者平均数的关系,方差的关系,进而可得到答案.【详解】样本的平均数是10,方差为2,所以样本的平均数为,方差为.故选:D.【点睛】样本的平均数是,方差为,则的平均数为,方差为.7、B【解析】

先利用幂函数的定义求出m的值,得到幂函数解析式为f(x)=x3,在R上单调递增,再利用幂函数f(x)的单调性,即可得到a,b,c的大小关系.【详解】由幂函数的定义可知,m﹣1=1,∴m=2,∴点(2,8)在幂函数f(x)=xn上,∴2n=8,∴n=3,∴幂函数解析式为f(x)=x3,在R上单调递增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故选:B.【点睛】本题主要考查了幂函数的性质,以及利用函数的单调性比较函数值大小,属于中档题.8、C【解析】

由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.9、C【解析】

根据定义,求出,即可求出结论.【详解】因为集合,所以,则,所以.故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.10、C【解析】

,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.11、B【解析】

根据函数单调性逐项判断即可【详解】对A,由正弦函数的单调性知sina与sinb大小不确定,故错误;对B,因为y=cx为增函数,且a>b,所以ca>cb,正确对C,因为y=xc为增函数,故,错误;对D,因为在为减函数,故,错误故选B.【点睛】本题考查了不等式的基本性质以及指数函数的单调性,属基础题.12、B【解析】

由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【详解】,,当,,,时,为有理项,共项.故选:B.【点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】

表示该二项式的展开式的第r+1项,令其指数为3,再代回原表达式构建方程求得答案.【详解】该二项式的展开式的第r+1项为令,所以,则故答案为:【点睛】本题考查由二项式指定项的系数求参数,属于简单题.14、.【解析】

化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.15、【解析】

分析题意可知,三棱柱为正三棱柱,所以三棱柱的中心即为外接球的球心,设棱柱的底面边长为,高为,则三棱柱的侧面积为,球的半径表示为,再由重要不等式即可得球表面积的最小值【详解】如下图,∵三棱柱为正三棱柱∴设,∴三棱柱的侧面积为∴又外接球半径∴外接球表面积.故答案为:【点睛】考查学生对几何体的正确认识,能通过题意了解到题目传达的意思,培养学生空间想象力,能够利用题目条件,画出图形,寻找外接球的球心以及半径,属于中档题16、【解析】

证明平面,于是,利用三棱锥的体积公式即可求解.【详解】平面,平面,,又.平面,是的中点,.

故答案为:【点睛】本题考查了线面垂直的判定定理、三棱锥的体积公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)1【解析】

(1)由菱形的性质和线面垂直的性质,可得平面,再由面面垂直的判定定理,即可得证;(2)设,分别求得,和的长,运用三棱锥的体积公式,计算可得所求值.【详解】(1)四边形为菱形,,平面,,又,平面,又平面,平面平面;(2)设,在菱形中,由,可得,,,,在中,可得,由面,知,为直角三角形,可得,三棱锥的体积,,菱形的边长为1.【点睛】本题考查面面垂直的判定,注意运用线面垂直转化,考查三棱锥的体积的求法,考查化简运算能力和推理能力,意在考查学生对这些知识的理解掌握水平.18、(1);(2)或【解析】试题分析:本题主要考查抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题等基础知识,同时考查考生的分析问题解决问题的能力、转化能力、运算求解能力以及数形结合思想.第一问,设出直线方程与抛物线方程联立,利用韦达定理得到y1+y2,y1y2,,代入到中解出P的值;第二问,结合第一问的过程,利用两种方法求出的长,联立解出m的值,从而得到直线的方程.试题解析:(Ⅰ)设l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)设A(x1,y1),B(x2,y2),则y1+y2=2pm,y1y2=4p,则.因为,所以x1x2+y1y2=12,即4+4p=12,得p=2,抛物线的方程为y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化为y2-4my+2=1.y1+y2=4m,y1y2=2.…6分设AB的中点为M,则|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直线l的方程为,或.…12分考点:抛物线的标准方程、直线与抛物线的相交问题、直线与圆相切问题.19、(Ⅰ);(Ⅱ)见解析【解析】

(Ⅰ)求函数的导数,利用x=2是f(x)的一个极值点,得f'(2)=0建立方程求出a的值,结合导数的几何意义进行求解即可;(Ⅱ)利用参数法分离法得到,构造函数求出函数的导数研究函数的单调性和最值,利用数形结合转化为图象交点个数进行求解即可.【详解】(Ⅰ)因为,则,因为是的一个极值点,所以,即,所以,因为,,则直线方程为,即;(Ⅱ)因为,所以,所以,设,则,所以在上是增函数,在上是减函数,故,所以,所以,设,则,所以在上是减函数,上是增函数,所以,所以当时,,函数在是减函数,当时,,函数在是增函数,因为时,,,,所以当时,方程无实数根,当时,方程有两个不相等实数根,当或时,方程有1个实根.【点睛】本题考查函数中由极值点求参,导数的几何意义,还考查了利用导数研究方程根的个数问题,属于难题.20、(1);(2).【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论