版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市滕州市滕州育才中学中考数学仿真试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34° B.56° C.66° D.54°2.一组数据1,2,3,3,4,1.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差3.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.4.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两。问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,则列方程组错误的是()A. B. C. D.5.-sin60°的倒数为()A.-2 B. C.- D.-6.现有三张背面完全相同的卡片,正面分别标有数字﹣1,﹣2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()A. B. C. D.7.若反比例函数的图像经过点,则一次函数与在同一平面直角坐标系中的大致图像是()A. B. C. D.8.已知直线与直线的交点在第一象限,则的取值范围是()A. B. C. D.9.方程的解是A.3 B.2 C.1 D.010.关于的方程有实数根,则满足()A. B.且 C.且 D.11.已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含12.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知反比例函数y=kx14.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.15.如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为_____.16.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.17.如图,当半径为30cm的转动轮转过120角时,传送带上的物体A平移的距离为______cm.18.如图,菱形ABCD的边长为15,sin∠BAC=35三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.(1)求抛物线C1的表达式;(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.20.(6分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE21.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(8分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣<a<的整数解.23.(8分)如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.24.(10分)某商场计划购进A,B两种新型节能台灯共100盏,A型灯每盏进价为30元,售价为45元;B型台灯每盏进价为50元,售价为70元.(1)若商场预计进货款为3500元,求A型、B型节能灯各购进多少盏?根据题意,先填写下表,再完成本问解答:型号A型B型购进数量(盏)x_____购买费用(元)__________(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?25.(10分)如图所示,在中,,(1)用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)(2)连接AP当为多少度时,AP平分.26.(12分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.27.(12分)“不出城郭而获山水之怡,身居闹市而有林泉之致”,合肥市某区不断推进“园林城市”建设,今春种植了四类花苗,园林部门从种植的这批花苗中随机抽取了2000株,将四类花苗的种植株数绘制成扇形统计图,将四类花苗的成活株数绘制成条形统图.经统计这批2000株的花苗总成活率为90%,其中玉兰和月季的成活率较高,根据图表中的信息解答下列问题:扇形统计图中玉兰所对的圆心角为,并补全条形统计图;该区今年共种植月季8000株,成活了约株;园林部门决定明年从这四类花苗中选两类种植,请用列表法或画树状图求恰好选到成活率较高的两类花苗的概率.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.2、D【解析】A.∵原平均数是:(1+2+3+3+4+1)÷6=3;添加一个数据3后的平均数是:(1+2+3+3+4+1+3)÷7=3;∴平均数不发生变化.B.∵原众数是:3;添加一个数据3后的众数是:3;∴众数不发生变化;C.∵原中位数是:3;添加一个数据3后的中位数是:3;∴中位数不发生变化;D.∵原方差是:;添加一个数据3后的方差是:;∴方差发生了变化.故选D.点睛:本题主要考查的是众数、中位数、方差、平均数的,熟练掌握相关概念和公式是解题的关键.3、C【解析】
根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
所以这些运动员跳高成绩的中位数是1.1.
故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.4、D【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.5、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.6、D【解析】
先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有﹣3、2、1三种情况,其中和为正数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.7、D【解析】
甶待定系数法可求出函数的解析式为:,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解:由于函数的图像经过点,则有∴图象过第二、四象限,
∵k=-1,
∴一次函数y=x-1,
∴图象经过第一、三、四象限,
故选:D.【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;8、C【解析】
根据题意画出图形,利用数形结合,即可得出答案.【详解】根据题意,画出图形,如图:当时,两条直线无交点;当时,两条直线的交点在第一象限.故选:C.【点睛】本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.9、A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.10、A【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.11、A【解析】试题分析:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.考点:圆与圆的位置关系.12、C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、34【解析】
由点B的坐标为(2,3),而点C为OB的中点,则C点坐标为(1,1.5),利用待定系数法可得到k=1.5,然后利用k的几何意义即可得到△OAD的面积.【详解】∵点B的坐标为(2,3),点C为OB的中点,∴C点坐标为(1,1.5),∴k=1×1.5=1.5,即反比例函数解析式为y=1.5x∴S△OAD=12×1.5=3故答案为:34【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数y=kx(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数k,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于14、90°或30°.【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.【详解】设顶角为x度,则当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,解得x=90°,当底角为x°+45°时,2(x°+45°)+x°=180°,解得x=30°,∴顶角度数为90°或30°.故答案为:90°或30°.【点睛】本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.15、(-2,6)【解析】分析:连接OB1,作B1H⊥OA于H,证明△AOB≌△HB1O,得到B1H=OA=6,OH=AB=2,得到答案.详解:连接OB1,作B1H⊥OA于H,由题意得,OA=6,AB=OC-2,则tan∠BOA=,∴∠BOA=30°,∴∠OBA=60°,由旋转的性质可知,∠B1OB=∠BOA=30°,∴∠B1OH=60°,在△AOB和△HB1O,,∴△AOB≌△HB1O,∴B1H=OA=6,OH=AB=2,∴点B1的坐标为(-2,6),故答案为(-2,6).点睛:本题考查的是矩形的性质、旋转变换的性质,掌握矩形的性质、全等三角形的判定和性质定理是解题的关键.16、7【解析】
首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,∴,∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.17、20π【解析】解:=20πcm.故答案为20πcm.18、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为sin∠BAC=35,AB=10,所以1考点:三角函数、菱形的性质及勾股定理;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y;(2);(3)E(,0).【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.【详解】解:(1)∵抛物线C1的顶点为,∴可设抛物线C1的表达式为y,将B(﹣1,0)代入抛物线解析式得:,∴,解得:a,∴抛物线C1的表达式为y,即y.(2)设抛物线C2的顶点坐标为∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称∴抛物线C2的顶点坐标为()可设抛物线C2的表达式为y∵抛物线C2开口朝下,且形状不变∴抛物线C2的表达式为y,即.(3)如图,作GK⊥x轴于G,DH⊥AB于H.由题意GK=DH=3,AH=HB=EK=KF,∵四边形AGFD是矩形,∴∠AGF=∠GKF=90°,∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,∴∠AGK=∠GFK.∵∠AKG=∠FKG=90°,∴△AGK∽△GFK,∴,∴,∴AK=6,,∴BE=BK﹣EK=3,∴OE,∴E(,0).【点睛】本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.20、证明见解析.【解析】
易证△DAC≌△CEF,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF中:,∴△DAC≌△CEF(AAS),∴AD=CE,AC=EF,∴AE=AD+EF【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.21、-17.1【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.22、,1.【解析】
首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.【详解】解:(﹣a)÷(1+)=×=,∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,当a=1时,原式==1.23、(1)见解析;(2)2【解析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24、(1)30x,y,50y;(2)商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【解析】
(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得:解得:.答:应购进A型台灯75盏,B型台灯2盏.故答案为30x;y;50y;(2)设商场应购进A型台灯x盏,销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x)=15x+1﹣20x=﹣5x+1,即y=﹣5x+1.∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥2.∵k=﹣5<0,y随x的增大而减小,∴x=2时,y取得最大值,为﹣5×2+1=1875(元).答:商场购进A型台灯2盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.【点睛】本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.25、(1)详见解析;(2)30°.【解析】
(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得∠B的度数,可得答案.【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,∵EF为AB的垂直平分线,∴PA=PB,∴点P即为所求.(2)如图,连接AP,∵,∴,∵AP是角平分线,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当时,AP平分.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.26、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.【解析】试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.试题解析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《钢结构的基本知识》课件
- 2024年度橱柜定制与合作伙伴关系合同
- 2024年度汽车修理工非全日制劳动合同3篇
- 2024年度建筑工程设计与施工管理合同
- 2024年度云计算数据中心设计与建设合同
- 2024年度光伏组件供应与安装合同2篇
- 幼儿园课件图
- 2024中国石化江汉油田分公司毕业生招聘71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国外运华南限公司园招聘20人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人民财产保险股份限公司毕节分公司招聘理赔人员7人(贵州)易考易错模拟试题(共500题)试卷后附参考答案
- 鱼类洄游(总)详细版课件
- 学会换位思考-共建和谐人际关系课件
- 2020年华医网继续教育学习 坚定职业信仰,改善医疗服务试题及答案
- YB∕T 5308-2011 粉末冶金用还原铁粉
- 小学数学专题讲座:小学数学计算能力的培养知识讲稿课件
- 西格斯雾化器操作维护课件
- 硫酸密度、浓度对照表
- 相似三角形的应用举例课件
- 呼吸机使用考试题及答案
- 关联词专题复习课件
- 国家自然科学基金经验交流课件
评论
0/150
提交评论