版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省聊城市于集镇中学高一下数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则()A. B.C. D.2.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④3.化为弧度是A. B. C. D.4.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B. C. D.5.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向6.设平面向量,,若,则等于()A. B. C. D.7.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()A. B. C. D.8.等差数列中,,,下列结论错误的是()A.,,成等比数列 B.C. D.9.,,是空间三条不同的直线,则下列命题正确的是A., B.,C.,,共面 D.,,共点,,共面10.直线的倾斜角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直角梯形.中,,分别为的中点,以为圆心,为半径的圆交于,点在上运动(如图).若,其中,则的最大值是________.12.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.13.若角是第四象限角,则角的终边在_____________14.已知为等差数列,,前n项和取得最大值时n的值为___________.15.用秦九韶算法求多项式当时的值的过程中:,__.16.已知直线l过点P(-2,5),且斜率为-,则直线l的方程为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,正三棱柱的各棱长均为,为棱的中点,求异面直线与所成角的余弦值.18.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.19.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.20.已知数列的前项和为,且满足,().(Ⅰ)求的值,并求数列的通项公式;(Ⅱ)设数列的前项和为,求证:().21.已知数列中,..(1)写出、、;(2)猜想的表达式,并用数学归纳法证明.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
先由诱导公式得到a=cos2019°=–cos39°,再根据39°∈(30°,45°)得到大致范围.【详解】a=cos2019°=cos(360°×5+180°+39°)=–cos39°∵,∴可得:∈(,),=.故选A.【点睛】这个题目考查了三角函数的诱导公式的应用,以及特殊角的三角函数值的应用,题目比较基础.2、C【解析】
根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.3、D【解析】
由于,则.【详解】因为,所以,故选D.【点睛】本题考查角度制与弧度制的互化.4、B【解析】
先由已知条件求出扇形的半径为,再结合弧长公式求解即可.【详解】解:设扇形的半径为,由弧度数为2的圆心角所对的弦长也是2,可得,由弧长公式可得:这个圆心角所对的弧长是,故选:B.【点睛】本题考查了扇形的弧长公式,重点考查了运算能力,属基础题.5、A【解析】
通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.6、D【解析】分析:由向量垂直的条件,求解,再由向量的模的公式和向量的数量积的运算,即可求解结果.详解:由题意,平面向量,且,所以,所以,即,又由,所以,故选D.点睛:本题主要考查了向量的数量积的运算和向量模的求解,其中解答中熟记平面向量的数量积的运算公式和向量模的计算公式是解答的关键,着重考查了推理与运算能力,属于基础题.7、C【解析】
试题分析:从中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为,故选C.考点:古典概型8、C【解析】
根据条件得到公差,然后得到等差数列的通项,从而对四个选项进行判断,得到答案.【详解】等差数列中,,所以,所以,所以,,,,,,,,,所以,所以,,成等比数列,故A选项正确,,故B选项正确,,故C选项错误,,故D选项正确.故选:C.【点睛】本题考查求等差数列的项,等差数列求前项的和,属于简单题.9、B【解析】
解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条.选项A,可能相交.选项C中,可能不共面,比如三棱柱的三条侧棱,选项D,三线共点,可能是棱锥的三条棱,因此错误.选B.10、C【解析】
求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
建立直角坐标系,设,根据,表示出,结合三角函数相关知识即可求得最大值.【详解】建立如图所示的平面直角坐标系:,分别为的中点,,以为圆心,为半径的圆交于,点在上运动,设,,即,,所以,两式相加:,即,要取得最大值,即当时,故答案为:【点睛】此题考查平面向量线性运算,处理平面几何相关问题,涉及三角换元,转化为求解三角函数的最值问题.12、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.13、第二或第四象限【解析】
根据角是第四象限角,写出角的范围,即可求出角的终边所在位置.【详解】因为角是第四象限角,所以,即有,当为偶数时,角的终边在第四象限;当为奇数时,角的终边在第二象限,故角的终边在第二或第四象限.【点睛】本题主要考查象限角的集合的应用.14、20【解析】
先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.15、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.16、3x+4y-14=0【解析】由y-5=-(x+2),得3x+4y-14=0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
作交于,则为异面直线与所成角,在中求出各边的长度,根据余弦定理,得到的余弦值,即为答案.【详解】作交于,则为异面直线与所成角,因为为中点,所以是的一条中位线,所以,因为正三棱柱,所以面,而面,所以所以在中,,则,在中,,则,在中,由余弦定理得.故答案为【点睛】本题考查求异面直线所成的角的余弦值,余弦定理,属于简单题.18、(I);(II)【解析】
(I)由正弦定理得,展开结合两角和的正弦整理求解;(Ⅱ)由面积得,利用平方求解即可【详解】(I),由正弦定理得整理得,则,,.(II),,两边平方得【点睛】本题考查正弦定理及两角和的正弦,三角形内角和定理,考查向量的数量积及模长,准确计算是关键,是中档题19、(1);(2).【解析】
(1)由二倍角公式得,求得则角可求;(2),得,由正弦定理得,再结合余弦定理得则面积可求【详解】(1)因为,所以,解得,因为,所以;(2)因为,所以,由正弦定理得所以,由余弦定理,,所以,所以.【点睛】本题考查二倍角公式,正余弦定理解三角形,准确计算是关键,是基础题20、(Ⅰ),,(Ⅱ)见解析【解析】
(Ⅰ)根据和项与通项关系得,利用等比数列定义求得结果(Ⅱ)利用放缩法以及等比数列求和公式证得结果【详解】(Ⅰ),由得,两式相减得故,又所以数列是以2为首项,公比为2的等比数列,因此,即.(Ⅱ)当时,,所以.当时,故又当时,,.因此对一切成立.【点睛】本题主要考查了利用和的关系以及构造法求数列的通项公式,同时考查利用放缩法证明数列不等式,解题难点是如何放缩,意在考查学生的数学建模能力和数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄山学院《材料力学》2021-2022学年第一学期期末试卷
- 淮阴师范学院《中学思想政治学科教学论》2021-2022学年第一学期期末试卷
- 淮阴师范学院《现代教师礼仪》2021-2022学年第一学期期末试卷
- 淮阴师范学院《雕塑》2022-2023学年第一学期期末试卷
- 淮阴师范学院《大学体育》2021-2022学年第一学期期末试卷
- 淮阴工学院《通信电子线路》2022-2023学年期末试卷
- DB5115-T 129-2024《油樟优树选择技术规程》
- DB 3705-T 14-2024《城市大脑场景应用开发规范》
- 噢易教育桌面云解决方案(100点)
- 劳动防护用品知识培训考核试卷
- 教师教学述评管理制度
- 建立网络安全管理责任制明确安全工作职责和责任
- 安徽省工伤职停工留薪分类目录
- 30题南昌轨道交通集团供电技术类岗位岗位常见面试问题含HR问题考察点及参考回答
- 农贸市场摊位招商方案
- 医疗设备采购 投标技术方案 (技术方案)
- 《化学课程思政元素》
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 门诊品管圈课件:提高门诊治疗患者健康教育的满意度
- 职业生涯报告六篇
- 作业本印制服务投标方案(技术标)
评论
0/150
提交评论