安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题含解析_第1页
安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题含解析_第2页
安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题含解析_第3页
安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题含解析_第4页
安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省六安市第一中学、合肥八中、阜阳一中三校2024届数学高一下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等差数列,,,则此数列前项和等于().A. B. C. D.2.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π33.下列函数,是偶函数的为()A. B. C. D.4.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.55.若集合A=x∈Nx-1≤1A.3 B.4 C.7 D.86.在中,内角的对边分别为,且,,若,则()A.2 B.3 C.4 D.7.若、、为实数,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.已知函数,此函数的图象如图所示,则点的坐标是()A. B. C. D.9.已知数列是公差不为零的等差数列,函数是定义在上的单调递增的奇函数,数列的前项和为,对于命题:①若数列为递增数列,则对一切,②若对一切,,则数列为递增数列③若存在,使得,则存在,使得④若存在,使得,则存在,使得其中正确命题的个数为()A.0 B.1 C.2 D.310.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,则等于______.12.如图,在△中,三个内角、、所对的边分别为、、,若,,为△外一点,,,则平面四边形面积的最大值为________13._______________。14.已知数列满足,,,记数列的前项和为,则________.15.已知曲线与直线交于A,B两点,若直线OA,OB的倾斜角分别为、,则__________16.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和为,且满足(1)求数列的通项公式;(2)设,令,求18.已知圆:与圆:.(1)求两圆的公共弦长;(2)过平面上一点向圆和圆各引一条切线,切点分别为,设,求证:平面上存在一定点使得到的距离为定值,并求出该定值.19.某中学从高三男生中随机抽取n名学生的身高,将数据整理,得到的频率分布表如表所示:组号分组频数频率第1组50.05第2组a0.35第3组30b第4组200.20第5组100.10合计n1.00(1)求出频率分布表中的值,并完成下列频率分布直方图;(2)为了能对学生的体能做进一步了解,该校决定在第1,4,5组中用分层抽样取7名学生进行不同项目的体能测试,若在这7名学生中随机抽取2名学生进行引体向上测试,求第4组中至少有一名学生被抽中的概率.20.设数列的前项和为,且.(1)求数列的通项公式;(2)若,为数列位的前项和,求;(3)在(2)的条件下,是否存在自然数,使得对一切恒成立?若存在,求出的值;若不存在,说明理由.21.已知函数.(1)求函数f(x)的最小值及f(x)取到最小值时自变量x的集合;(2)指出函数y=f(x)的图象可以由函数y=sinx的图象经过哪些变换得到;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故选D2、D【解析】

将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【点睛】本题考查利用几何概型求解概率问题,属于基础题.3、B【解析】

逐项判断各项的定义域是否关于原点对称,再判断是否满足即可得解.【详解】易知各选项的定义域均关于原点对称.,故A错误;,故B正确;,故C错误;,故D错误.故选:B.【点睛】本题考查了诱导公式的应用和函数奇偶性的判断,属于基础题.4、C【解析】

选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.5、A【解析】

先求出A∩B的交集,再依据求真子集个数公式求出,也可列举求出。【详解】A=x∈Nx-1≤1A∩B=0,1,所以A∩B的真子集的个数为2【点睛】有限集合a1,a2,⋯6、B【解析】

利用正弦定理化简,由此求得的值.利用三角形内角和定理和两角和与差的正弦公式化简,由此求得的值,进而求得的值.【详解】利用正弦定理化简得,所以为锐角,且.由于,所以由得,化简得.若,则,故.若,则,由余弦定理得,解得.综上所述,,故选B.【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查同角三角函数的基本关系式,考查三角形内角和定理,考查两角和与差的正弦公式,属于中档题.7、B【解析】

利用等式的性质或特殊值法来判断各选项中不等式的正误.【详解】对于A选项,若,则,故A不成立;对于B选项,,在不等式同时乘以,得,另一方面在不等式两边同时乘以,得,,故B成立;对于选项C,在两边同时除以,可得,所以C不成立;对于选项D,令,,则有,,,所以D不成立.故选B.【点睛】本题考查不等式正误的判断,常用的判断方法有:不等式的基本性质、特殊值法以及比较法,在实际操作中,可结合不等式结构合理选择相应的方法进行判断,考查推理能力,属于基础题.8、B【解析】

根据确定的两个相邻零点的值可以求出最小正周期,进而利用正弦型最小正周期公式求出的值,最后把其中的一个零点代入函数的解析式中,求出的值即可.【详解】设函数的最小正周期为,因此有,当时,,因此的坐标为:.故选:B【点睛】本题考查了通过三角函数的图象求参数问题,属于基础题.9、C【解析】

利用函数奇偶性和单调性,通过举例和证明逐项分析.【详解】①取,,则,故①错;②对一切,,则,又因为是上的单调递增函数,所以,若递减,设,且,且,所以,则,则,与题设矛盾,所以递增,故②正确;③取,则,,令,所以,但是,故③错误;④因为,所以,所以,则,则,则存在,使得,故④正确.故选:C.【点睛】本题函数性质与数列的综合,难度较难.分析存在性问题时,如果比较难分析,也可以从反面去举例子说明命题不成立,这也是一种常规思路.10、B【解析】

根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、15【解析】

先由,可求出,然后由,代入已知递推公式即可求解。【详解】故答案为15.【点睛】本题考查是递推公式的应用,是一道基础题。12、【解析】

根据题意和正弦定理,化简得,进而得到,在中,由余弦定理,求得,进而得到,,得出四边形的面积为,再结合三角函数的性质,即可求解.【详解】由题意,在中,因为,所以,可得,即,所以,所以,又因为,可得,所以,即,因为,所以,在中,,由余弦定理,可得,又因为,所以为等腰直角三角形,所以,又因为,所以四边形的面积为,当时,四边形的面积有最大值,最大值为.故答案为:.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.13、【解析】

本题首先可根据同角三角函数关系式化简得出,然后根据两角差的正弦公式化简得出,最后根据二倍角公式以及三角函数诱导公式即可得出结果。【详解】,故答案为【点睛】本题考查根据三角函数相关公式进行化简求值,考查到的公式有、、以及,考查化归与转化思想,是中档题。14、7500【解析】

讨论的奇偶性,分别化简递推公式,根据等差数列的定义得的通项公式,进而可求.【详解】当是奇数时,=﹣1,由,得,所以,,,…,…是以为首项,以2为公差的等差数列,当为偶数时,=1,由,得,所以,,,…,…是首项为,以4为公差的等差数列,则,所以.故答案为:7500【点睛】本题考查数列递推公式的化简,等差数列的通项公式,以及等差数列前n项和公式的应用,也考查了分类讨论思想,属于中档题.15、【解析】

曲线即圆曲线的上半部分,因为圆是单位圆,所以,,,,联立曲线与直线方程,消元后根据韦达定理与直线方程代入即可求解.【详解】由消去得,则,由三角函数的定义得故.【点睛】本题主要考查三角函数的定义,直线与圆的应用.此题关键在于曲线的识别与三角函数定义的应用.16、7【解析】

奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

试题分析:(1)利用得到相邻两项的关系,把问题转化为等比数列问题;(2)利用裂项相消法求和.试题解析:(1)由,得得∴是等比数列,且公比为(2)由(1)及得,18、(1)(2)【解析】

(1)把两圆方程相减得到公共弦所在直线方程,再根据点到直线距离公式与圆的垂径定理求两圆的公共弦长;(2)根据圆的切线长与半径的关系代入化简即可得到点的轨迹方程,进而求解.【详解】解:(1)由,相减得两圆的公共弦所在直线方程为:,设(0,0)到的距离为,则所以,公共弦长为所以,公共弦长为.(2)证明:由题设得:化简得:配方得:所以,存在定点使得到的距离为定值,且该定值为.【点睛】本题主要考查圆的应用.求两圆的公共弦关键在求公共弦所在直线方程;求动点与定点距离问题,首先要求出动点的轨迹方程.19、(1)直方图见解析;(2).【解析】

(1)由题意知,0.050,从而n=100,由此求出第2组的频数和第3组的频率,并完成频率分布直方图.(2)利用分层抽样,35名学生中抽取7名学生,设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为,利用列举法能求出第4组中至少有一名学生被抽中的概率.【详解】(1)由频率分布表可得,所以,;(2)因为第1,4,5组共有35名学生,利用分层抽样,在35名学生中抽取7名学生,每组分别为:第1组;第4组;第5组.设第1组的1位学生为,第4组的4位同学为,第5组的2位同学为.则从7位学生中抽两位学生的基本事件分别为:一共21种.记“第4组中至少有一名学生被抽中”为事件,即包含的基本事件分别为:一共3种,于是所以,.【点睛】本题考查概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,是基础题.20、(1)(2)(3)【解析】

(1)根据题干可推导得到,进而得到数列是以为首项,为公比的等比数列,由等比数列的通项公式得到结果;(2)由错位相减的方法得到结果;(3)根据第二问得到:,数列单调递增,由数列的单调性得到数列范围.【详解】(1)由,令,则,又,所以.当时,由可得,,即,所以是以为首项,为公比的等比数列,于是.(2)∴∴从而.(3)由(2)知,∴数列单调递增,∴,又,∴要恒成立,则,解得,又,故.【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论